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Abstract

In the cardiovascular system, blood flow rates, blood velocities and blood pressures can be modeled using the Navier–Stokes
equations. Inputs to the system are typically uncertain, such as (a) the geometry of the arterial tree, (b) clinically measured blood
pressure and viscosity, (c) boundary resistances, among others. Due to a large number of such parameters, efficient quantification
of uncertainty in solution fields in this multi-parameter space is challenging. We use an adaptive stochastic collocation method to
quantify the impact of uncertainty in geometry in patient-specific models. We develop a novel subdivision method to define the
stochastic space of geometries. To accelerate convergence and make the problem tractable, we use a machine learning approach to
approximate the simulation-based solution. Towards this, a reduced order model of the Navier–Stokes equations is developed using
a segmental resistance analog boundary conditions (ratio of pressure to flow). Using an offline database of pre-computed solutions,
we compute a map (rule) from the features to solution fields. We achieve significant speed-up (of a few orders of magnitude)
by approximating the simulation-based solution using a machine learning predictor. A bootstrap aggregated decision tree was
found to be the best predictor among many candidate regressors (correlation coefficient of training set was 0.94). We demonstrate
stochastic space convergence using the adaptive stochastic collocation method, and also show robustness to the choice of geometry
parameterization. The sensitivities to geometry obtained using machine learning had a correlation coefficient of 0.92 with the values
obtained using finite element simulations. Segments with significant disease in the larger arteries had the highest sensitivities.
Terminal segments are more sensitive to dilation and proximal healthy segments are more sensitive to erosion. Sensitivity to
geometry is highest when geometric resistance is comparable to net downstream resistance.
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1. Introduction

Computer simulations are becoming increasingly powerful for understanding mechanisms of disease, diagnosing
disease and devising treatment strategies in the human circulatory system [1–3]. Such simulations can be chiefly classi-
fied as hemodynamic simulations to compute spatio-temporal evolution of blood flow rate and pressure, fluid–structure
interaction to capture wall motion and wall stresses [4], and growth and remodeling simulations [5–7] to predict long
term evolution of arterial properties in health and disease. There has been a significant increase in the clinical ap-
plicability of computational tools, owing to sophistication in image acquisition, better understanding of boundary
conditions, interaction between wall motion and fluid flow, and arterial remodeling mechanisms [8]. Such tools have
shown significant promise in assessing the functional significance of coronary artery disease [9–12], prediction of
atherosclerosis [13], aneurysm growth [6,7], failure mechanism in bypass grafts [14], outcome of stenting, outcome
of pediatric surgeries [15–17], etc. In this paper, we restrict attention to hemodynamic simulations.

Uncertainties that arise in hemodynamic simulations include (a) flow rate and pressure at inlets/outlets to the model,
(b) lumped parameter boundary conditions such as resistances and capacitances, (c) clinical variables such as blood
viscosity and density, and (d) uncertainty in reconstructed lumen geometry. Imaging data using techniques such as
magnetic resonance imaging (MRI) or computed tomography (CT) are used to reconstruct the arterial lumen geom-
etry [18], but can be noisy due to motion and registration artifacts, blooming artifacts, motion of the arteries during
the cardiac cycle, etc [19,20]. Assumptions such as constant blood viscosity [21], approximation of micro-vessels
using lumped parameter boundary conditions, and population averaged empirical laws give rise to more sources of
uncertainties. Here, we restrict discussion to the impact of geometry in quantifying uncertainties in hemodynamic
simulations of the coronary artery. Impact of clinical parameters such as flow rate and boundary conditions have been
explored earlier [22]. We will focus attention on blood flow simulations in human coronary arteries and derived quan-
tity of significant utility in diagnosing the severity of coronary artery disease, the fractional flow reserve (FFR). FFR is
defined as the ratio of blood flow rate under conditions of maximal hyperemia (reduced myocardial bed resistance) at
a given location to the hypothetical value if no disease were present in the coronary artery. Under modest assumptions,
the FFR can be shown to be equal to the ratio of local coronary artery blood pressure to aortic blood pressure under
maximal hyperemic conditions.

Clinically, FFR is measured in the cardiac catheterization laboratory using a pressure wire during the intravenous
administration of adenosine to elicit maximal hyperemic response [23]. Measurement of FFR has emerged as the
gold-standard for determining which lesions in the coronary arteries are flow-limiting and should be stented and
which patients should be treated medically [24–26]. Recent developments in patient-specific CFD modeling have
enabled the computation of FFR noninvasively from CT data [9], referred to as FFRCT. Data from three multicenter
clinical trials indicates that this technology significantly improves the noninvasive assessment of coronary artery
disease [10–12]. Thus, the assessment of the sensitivity of patient-specific coronary artery blood flow simulations
is of significant interest as these tools are currently being used for clinical decision-making. However, there is still
scope for improvement of FFRCT and understanding of sources of error compared to invasive measurements. For
example, geometric sensitivity information can aid in identifying regions of the patient-specific model that require
extra attention during review, which is the motivation for the present work.

In the past decade, various methods have been developed to quantify uncertainty in partial differential equations
(PDEs). Some of these have been used in hemodynamic simulations [14,22] to quantify the impact of uncertainties in
inlet blood flow rate, lumped parameter resistances and capacitances, and simple geometric parameters such as angle
of anastomosis in bypass grafts and representative stenotic radius. Recently, Steinman and co-workers performed
computational simulations to evaluate sensitivities in quantities such as wall shear stress and oscillatory shear index
to variations in blood rheology, secondary flows, etc. in human subjects [19,20]. These were some of the first
studies showing the relationship between fluctuations in input parameters and output quantities for patient-specific
cardiovascular simulations. However, a comprehensive assessment of diverse sources of uncertainties including
clinical and geometrical variables on patient-specific models has not been performed to-date owing to the following
challenges — (a) depending on the size of the arterial tree, it is computationally intractable to quantify the impact of a
large number of uncertain variables, and (b) parameterizing and defining shape-space for patient-specific geometries
has not yet been performed. Quantifying uncertainties can help us compute the coefficient of variation, sensitivity as
well as the probability distribution of quantities of interest. These, in turn, can impact diagnostic capability as well as
prediction of disease progression. For instance, a cutoff of 0.8 in FFRCT is used to determine the treatment protocol.
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Uncertainty quantification (UQ) tools can help quantify confidence of diagnosis using FFRCT that is calculated
through simulation. Solving stochastic differential equations under geometric uncertainty has not been explored for
complex and/or patient-specific geometries. This is the first time uncertainty with respect to patient-specific vascular
geometry is performed. Novel developments include (a) a subdivision strategy to define a stochastic space of patient-
specific geometries, (b) a machine learning algorithm to accelerate solution to Navier–Stokes equations using a
large database of patient-specific solutions, and (c) a reduced order model used as a feature in the machine learning
algorithm that simplifies the solution to the Navier–Stokes equations by solving flowrate and pressure loss only using
lumen areas.

The goal of this paper is to present an efficient framework to quantify impact of uncertainty in geometry on
FFRCT. To achieve this goal, we first reduce the infinite dimensional space of surface geometries to a discretized finite
dimensional subset using branch locations as separators. Subsequently, we develop a machine learning based surrogate
to the governing equations to make the stochastic problem computationally tractable and accelerate convergence.
The stochastic collocation method [27,28] is used to model different sources of uncertainties. Using this approach,
simulations are performed at specific collocation points in the stochastic space [27,28]. This technique combines the
exponential convergence rates of the GPCE scheme [29–32] with the decoupled nature of Monte-Carlo techniques. It
is non-intrusive and can be used with legacy codes or in situations where source code is not available. The Smolyak
algorithm helps accelerate the convergence of stochastic collocation method in higher dimensions. It is to be noted
that the machine learning method can also be used with other stochastic methods such as probabilistic collocation
method [33], simplex collocation method [34] and hybrid stochastic projection method [35].

In spite of the efficiency of the Smolyak algorithm, inclusion of geometric uncertainties could result in hundreds
of quadrature points. Even with recent improvements in computational methods [4,36] and processor speeds, it could
take days to evaluate sensitivity throughout the arterial geometry. Hence, we use a surrogate model using a machine
learning approach to accelerate convergence. Simpler surrogate models have been proposed earlier which do not
parameterize variables globally, implying that only one data point is available per simulation and do not provide any
spatial resolution. In contrast, we use a descriptive feature set so as to utilize simulation results from every location
in the coronary tree. Other alternatives to our machine learning approach are to use reduced-order models, wherein
the 3D Navier–Stokes equations are reduced to centerline vessel trees, and mass and energy conservation equations
are imposed. These methods are powerful if the reduced order equations could adequately describe behavior of the
system. If not, they lack sufficient free parameters to incorporate patient-specific data to predict simulation outcomes.
Machine learning does not explicitly satisfy conservation laws, but has the advantage of being significantly faster and
more descriptive. Whenever possible, we use features motivated from conservation laws such as using reduced order
models. We also implement a disease burden score to capture deviation of arterial geometry from a theoretical healthy
radius.

We limit the developments of this paper to uncertainty in lumen radius, since that is hypothesized to be the
primary variable driving pressure loss near diseased regions. Further, we assume continuity of FFRCT as well as
its derivatives in the stochastic space. The validation of the perturbation model is restricted to deformation maps with
fixed bifurcation locations. Further, we assume rigid walls, but methods for fluid–structure interaction [37,38] may
also be used with the framework developed in this paper. Other numerical methods such as iso-geometric analysis
may also be used [39].

The paper is organized as follows. In Section 2, we discuss some mathematical formalism and background of the
techniques developed. We also describe the method used to define uncertainty in geometry. In Section 3, we discuss
accuracy of the machine learning model, and subsequently show geometric sensitivity for different patient-specific
geometries. In Section 4, we discuss the results and implications of the findings. The nomenclature of symbols used
are described in Table 1.

2. Methods

2.1. Image acquisition and model construction

Computed tomography angiography (CTA) images encompassing all coronary arteries and a portion of the
ascending aorta for all patients are first extracted. Subsequently, a centerline branching tree is extracted which passes
through the center of the aorta, splits into the left and right coronary arteries, which further branches out to the rest of
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Table 1
A nomenclature of the symbols used in the paper.

Nomenclature

ρ Density u Velocity
µ Dynamic viscosity f Body forces
p Pressure Paorta Pressure in aorta
FFRCT FFR calculated from CT Pc Mean pressure in coronary artery
Ω Patient-specific geometry Ω∗ Family of geometries
Ck Centerline point k A(Ck ) Lumen area at Ck
Sm Segment m composed of set of centerlines A(Sm ) Lumen area of centerline set Sm
∆Ωi Perturbation of ith segment ∆A(Si ) Perturbation of ith segment
ξ Stochastic space ξm

k kth collocation point of mth segment
u0 Magnitude of uncertainty α Magnitude of area perturbation
σ Correlation length d(., .) Euclidean distance
c Co-ordinate of centerline point c0 Co-ordinate of mid-centerline point of segment
∆p Perturbation of surface node cx Projection of surface node on centerline
L Lagrange polynomials U Uniform distribution
u0,mean Mean uncertainty u0,std Standard deviation in uncertainty
umax Maximum uncertainty κ Health index
r or rx Lumen radius rhealthy Theoretical healthy radius

N Gaussian function wx Kernel weighting functions
I (., .) Indicator function S(., .) Sigmoidal function
α Functional form for perturbation in area doffset Distance to nearest upstream bifurcation
xostium Co-ordinate of upstream ostium xup Co-ordinate of upstream bifurcation
∆P Pressure drop qcor Total coronary flow rate
mmyo Mass of myocardium qdil Dilation coefficient
Reff Effective downstream boundary resistance qa Aortic flow rate coefficient
Ro Resistance of outlet o ndown Number of downstream outlets for a given point
Pdiastole Blood pressure at diastole Psystole Blood pressure at systole
R6geom Net geometric resistance ravg Average radius in a vessel segment
L Length of vessel segment Precovery Pressure recovery factor

G Information gain H Entropy function
Q(x) Flow-rate at a centerline point Rgeom Geometric resistance of a section
rpre Radius before stenosis onset rpost Radius after stenosis onset
Fk kth Feature in the machine learning algorithm pk Probability of feature k

the coronary artery vasculature. The centerline is described by a finite number of points NCL. Following this, lumen
segments are calculated at each centerline point (using automated and manual thresholding) which are lofted to form
the three dimensional geometry.

2.2. Deterministic blood flow simulations

Blood flow in the cardiovascular system can be modeled using the Navier–Stokes equations which are given by:

ρ (u ,t (x, t) + (u · ∇)u(x, t)) = −∇ p(x, t) + µ∇
2u(x, t) + f ∀x ∈ Ω

∇ · u(x, t) = 0, (1)

where f represents all body forces, ρ denotes density, µ denotes dynamic viscosity, u denotes velocity, p denotes
pressure, and Ω represents the patient-specific problem geometry. Finite element simulations have emerged as a
powerful and robust tool to solve these equations in complex patient-specific geometries [3,36]. The three dimensional
geometry is first discretized into a mesh with tetrahedral elements. A stabilized finite element technique using the
generalized-α method [3,40] is employed. Linear basis elements are used within each element. Walls are assumed
to be rigid, and Newtonian constitutive behavior of the fluid is assumed, with viscosity of blood being 0.04 g/cm.s.
and density being 1.06 g/cm3. At the aortic inlet, a velocity profile (Dirichlet) boundary condition is prescribed, and
the outlets are modeled using a resistance condition which couples blood pressure and velocity at outlet nodes [36].
A parabolic profile was prescribed at the model inlet across the finite element mesh nodes that constitute the inlet
surface. Fractional flow reserve is calculated as FFRCT(x) =

Pc(x)
Paorta

where Paorta is the mean aortic pressure and
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Fig. 1. An overview of the process of calculating FFRCT from cCTA images (top left) a coronary computed tomography angiography (cCTA) image
encompassing all the arteries of interest, (top right) a three dimensional computational model of the aorta, left and right coronary arteries, (bottom
right) a finite element tetrahedral mesh of the reconstructed model and (bottom left) FFRCT map calculated from the solution of Navier–Stokes
equations.

Pc(x) is the mean pressure in the coronary artery [9]. The various steps in the process of calculating FFRCT from
geometry are shown in Fig. 1.

2.3. Modeling uncertainty in geometry

Since the true patient-specific geometry is unknown, the goal is to solve the equations in a family of geometries,
Ω∗, such that the true geometry lies within this family. Each geometry in Ω∗ is associated with a probability, and we
are interested in a multitude of ensemble properties of blood flow and pressure within Ω∗. We represent stochastic
nature of an entity using the symbol ξ , where a probability distribution function is associated with ξ .

First, we assume that the arterial geometry is represented by cross-sectional lumen area, denoted A(.), at distinct
centerline points (fictional points at the center of artery), denoted by Ci corresponding to the ith centerline point.
Hence, the discrete geometry Ω is approximated first as

Ω ∼

A(C1), A(C2) · · · A(CNCL)


, (2)

where NCL is the number of centerline points. Subsequently, centerline points which fall between (i) two branching
points, (ii) a branch and an outlet, or (iii) a branch and an inlet, are grouped together. Hence, the geometry could be
approximated as

Ω ∼

A(Ci ) : i ∈ S1, A(Ci ) : i ∈ S2 · · · A(Ci ) : i ∈ SNS


≡


A(S1), A(S2), . . . , A(SNS )


, (3)
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where each Si consists of all the centerline points which fall in group i as described earlier, and NS is the number of
segments. NS and NCL are patient-specific and can vary widely across patients.

The allowable space of perturbations is now defined segment-wise. Hence, we can define the allowable space of
geometries as

Ω + ∆Ωi (ξ) =

A(S1), A(S2), . . . , A(Si ) + ∆A(Si , ξ), . . . , A(SNS )


,

where the perturbation in area of the ith segment is defined as

∆A(Si , ξ) ≡ [∆A(Ck, ξ) : k ∈ Si ] ≡ α(ck,i, ci,o, σ ; ξ),

where ck,i is the co-ordinate of the kth centerline point in ith segment, ci,o is the co-ordinate of center of the segment
Si (i goes from 1 to NS) and σ is a correlation length defined so that the perturbation at the boundary of the segments
is zero.

We explore two forms of the function α. The first is defined as a spatial Gaussian function centered on the center
of the segment,

α(ck,i, ci,o, σ ; ξ) = u0,i (ξ)
1

√
2πσi

e
−

d(ck,i,ci,o)

2σ2
i (4)

where u0,i (ξ) is the magnitude of uncertainty, d(., .) is the euclidean distance and the correlation length is set to be
1/6th the length of the segment so that the segment ends are at a distance 3σ from center with negligible perturbation.
The other option is to define a uniform perturbation such that

α(ck,i, ci,o, σ ; ξ) = u0,i (ξ). (5)

The latter does not ensure C0 continuity of the surface at bifurcation locations, and hence cannot be used with 3D
simulations. However, the uniform distribution can be used with the machine learning method and ensures that points
close to bifurcations are treated the same as points away from the bifurcations. Hence, we use the former definition
(Gaussian) to validate the model by comparing sensitivities, but use the uniform distribution to predict and report
sensitivity values.

We can also extend the definition above to define perturbations of a point in the arterial wall. These perturbations
will be defined as a perturbation (∆p) in the co-ordinate of a surface point xi, defined as

∆p(xi) = α(cxi , ci,o, σ ; ξ)

xi − cxi


,

where cxi is the projection of xi onto the centerline, such that

cxi − xi


· txi = 0, where txi is a tangent line along the

centerline. To calculate txi , we first obtain the closest centerline point to xi, say c1. Both the adjacent centerline points
are also calculated, say c2 (succeeding) and c3 (preceding). Then the projection is calculated by calculating optimal
λ = [0, 1] where cxi = c1 +λ(c2 −c1). If λ ≠ [0, 1], then we calculate optimal λ = [0, 1] where cxi = c3 +λ(c1 −c3).
A quadratic equation in λ with a unique real solution results when we substitute cxi in the projection equation. These
perturbations are used only for the validation problem to ensure continuity of the perturbed geometry. Fig. 3 shows a
schematic of the geometry representation.

2.4. Stochastic blood flow simulations

The stochastic Navier–Stokes equations are given by similar partial differential equations as Eq. (1), where the
velocity and pressure at each spatial and time point is a random field, due to uncertainty in the problem geometry. The
equations are represented by:

ρ (u ,t (x, t, ξ) + (u · ∇)u(x, t, ξ)) = −∇ p(x, t, ξ) + µ∇
2u(x, t, ξ) + f ∀x ∈ Ω∗(ξ)

∇ · u(x, t, ξ) = 0. (6)

To compute stochastic ensemble properties and sensitivity of the solution to geometry, we first parameterize
and define a stochastic space that encompasses possible patient geometries. We then compute the quadrature points
where simulations will be performed, by sampling and interpolating the stochastic space using the adaptive Smolyak
quadrature (collocation) method. To accelerate convergence, we use a machine learning predictor instead of 3D
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Fig. 2. Schematic of the algorithm that couples adaptive collocation with a machine learning algorithm.

Fig. 3. Schematic of geometric representation of the computational model, (a) radius at each centerline point, calculated using maximum inscribed
spheres, is used to represent geometry (b) perturbations on geometry are defined on a plane normal to the centerline and fixed at the end of segments
and (c) pictorial representation of a family of geometries around the reconstructed geometry.

Navier–Stokes equations to calculate FFRCT. This entails defining attributes that affects FFRCT. Finally, we can
evaluate probability distribution function of FFRCT and confidence intervals in FFRct from p(x, t, ξ). In Fig. 2, we
illustrate how the different components involved in quantifying geometric uncertainty are coupled together. Further
details and a discrete version of the problem are described in the next section.

2.4.1. Adaptive stochastic collocation framework
In the stochastic collocation technique [27,28], instead of dealing with probability density functions (PDFs)

directly, we perform computations in a stochastic space. A finite dimensional stochastic space is described by its
truncated descriptor (random vector) ξ so that

ξ =


ξ1, ξ2, . . . , ξ N


where the dimensionality N of the stochastic support space is problem dependent, superscripts denote dimension, and
ξ i represents either uniform or normally distributed random variables which are mapped to a parameter of interest.
Any construct on the stochastic space has an unique PDF associated with it.
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In the collocation method, the stochastic space is approximated using mutually orthogonal interpolating functions.
To represent a function g(x, t, ξ) at any point in the stochastic space, it is written as g(x, t, ξ) =


i g(x, t, ξ i )Li (ξ)

where Li (.) are orthogonal interpolating polynomials, superscript denotes dimension, and subscript denotes the ith
collocation point, hence

ξ i =


ξ1

i , ξ2
i , . . . , ξ N

i


: P −→ R N .

These interpolating polynomials have the property that Li (ξ j ) = δi j where δi j = 1 if i = j and zero otherwise.
This property is necessary to decouple the Navier–Stokes equations in stochastic space, i.e., each simulation will
correspond to a specific stochastic collocation point. Another possible choice is to use piecewise linear interpolates,
but their derivatives are discontinuous at the collocation points and hence converge slowly. The stochastic space can
then be queried at any point to compute PDFs. This method is specifically designed for uncertainty quantification in
large-scale simulations, such as CFD simulations in complex geometries.

By substituting the Lagrange interpolation formula into Eq. (1) and imposing the residuals to be 0 at ξ = ξ i , we
have the discretized stochastic Navier–Stokes equations given by

ρ

u(x, t, ξ i ) ,t +(u(x, t, ξ i ) · ∇)u(x, t, ξ i )


= −∇ p(x, t, ξ i ) + µ∇

2u(x, t, ξ i ) + f

∀i = 1, 2, . . . , M ∀x ∈ Ω i

∇ · u(x, t, ξ i ) = 0 ∀i = 1, 2, . . . , M (7)

where the stochastic blood velocity, u(x, t, ξ) =
M

i=1 ui (x, t, ξ i )Li (ξ), stochastic blood pressure, p(x, t, ξ) =M
i=1 pi (x, t, ξ i )Li (ξ), and Ω i

= Ω∗(ξ i ) is the perturbed geometry at collocation point corresponding to index i .
Each Ω∗(ξ i ) is translated to a specific geometry by using the perturbation functions defined in Eqs. (4) and (5).
The coefficient u0 in Eq. (5) is defined as a uniform function in the stochastic space, i.e. u0 ∼ U [0, umax], where
umax is the maximum uncertainty defined usually as a percentage of the radius. Hence, the coefficient is modeled as
u0, j (ξ j ) = umax/2 + umax/2(2ξ j − 1). Similarly, for a Gauss distribution, the inverse error function (erf−1) is used
as u0, j (ξ j ) = u0,mean + u0,stderf−1(0.99 ∗ (2ξ j − 1)) where u0,mean and u0,std are the mean and standard deviation
of the coefficient respectively.

The sparse-grid Smolyak algorithm [41,42] is used to compute the collocation points in multidimensional random
space. It has been shown that the sparse grid works best when the 1D quadrature rules are nested [42]. In this paper,
we employ 1D nested Chebyshev collocation nodes. It has been reported that using 1D Gauss quadrature rules results
in a higher number of function evaluations than using sparse grids for the same level. In a Smolyak sparse grid,
the depth of interpolation [41] defines the number of simulations to be run and error indicators are computed for
each depth of interpolation. The depth of interpolation allows flexibility in implementation because it can be adjusted
according to computational expense. The choice of sparse grid depends on the interpolation scheme that is being
employed. We showed recently that Lagrange interpolates converge very quickly in several cardiovascular blood-flow
examples [22].

The Smolyak algorithm does not take into account any information about the function itself [27,28]. Dimensional
adaptivity has been proposed in previous work [42] in which a dimension is refined based on its error indicator. Yet,
the refinement of each dimension itself is uniform, and hence adaptivity over a specific region in the stochastic space
is not performed. Hence, it does not account for steep function variations, and reduces to a conventional sparse grid
for any symmetric problem. We recently developed a method to adaptively choose collocation points for Lagrange
interpolating polynomials [14,22]. The essence of the algorithm is to split collocation points into a frozen set and an
active set. A neighborhood is associated with each collocation point. The neighbors are estimated by traversing along
one dimension at a time. This neighborhood consists of at most two collocation points in each dimension. Collocation
points at the boundary of the N-dimensional hypercube will have one neighbor in at least one dimension. A point is
considered frozen if its error indicator is zero or if it lies inside a frozen patch. We start with a coarse level and all
the collocation points are chosen to be active initially. The algorithm terminates when all collocation points are frozen
(refer Algorithm 1). Details of the algorithm are provided in [22] and Algorithm 1 described key steps. A schematic
of the algorithm is provided in Fig. 4.
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Fig. 4. The figure shows (from left to right) an analytical function being represented using collocation, f (ξ1, ξ2) = exp(−(ξ2
1 +ξ2

2 −0.25)×100),
the initial collocation grid with a depth of interpolation 1, the adaptive collocation grid at an intermediate iteration (depth = 5), and the adaptive
collocation grid at a depth of 7. The frozen set F is depicted using red circles and the rest of the collocation points are depicted using green circles.
The figure shows how the active collocation points are restricted to the neighborhood of the region with steep gradients in the function.

Algorithm 1 Algorithm for adaptive stochastic collocation adapted from [22]. F denotes a set of frozen collocation
points, Cd denotes stochastic collocation points at depth of interpolation (denoted by d), M denotes neighborhood
of a collocation point (denoted by c), the suffix “adapt” denotes adaptive stochastic collocation points, E denotes
interpolation error and ϵ denotes threshold.

Set d = 1
Set F = ∅

Perform simulations at C1 and C2
while ∃c such that E (c) < ϵ do

Evaluate function using Lagrange interpolation at Cadapt,d+1 ≡ (Cd+1 − Cd)

for ∀c ∈ Cadapt,d+1 do
if ∃m ∈ M(c) /∈ F then

Perform simulation at c
Calculate E (c) = f (c) − I f (c)
if E (c) < ϵ then

Update F = F ∪ c
end if

else
Interpolate function value at c
F = F ∪ c

end if
end for
Set d = d + 1

end while

2.5. Accelerate convergence using machine learning predictor

Though adaptive collocation is computationally much faster compared to Monte-Carlo methods, this method still
needs numerous blood flow simulations to reliably evaluate statistics of the quantity of interest. Instead of solving 3D
Navier–Stokes equations at each quadrature point, we evaluate a surrogate model which approximates the solution
obtained using the 3D equations. Surrogate methods use the results of simulations performed off-line, and substitutes
the original 3D equations with a simpler input–output relationship that is very inexpensive to evaluate. Such methods
have a “training” and “testing/prediction” mode. While this general concept has been explored earlier using techniques
such as stochastic response surface [14], reduced order modeling(ROM), proper orthogonal decomposition (POD),
the machine learning methods we use here have the following advantages: (a) they do not rely on solutions to ODE’s,
hence they are significantly faster to evaluate than ROM or POD methods, (b) they are not necessarily interpolatory,
hence they provide more flexibility than response surface methods. However, they rely on adequate training data so
that the conservative laws (momentum and mass) are “built-in” and the space of patient geometries is adequately
represented.
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Machine learning techniques encompass a broad class of built-in methods that map input features to quantities
of interest. Hence, the general steps involved in the machine learning algorithm are (i) define relevant features
(ii) construct training dataset (iii) compute best regressor and (iv) test performance of regressor on test set. We describe
the steps in this order.

2.5.1. Defining problem-specific features
Choosing problem and application-specific features is an important step in the machine learning algorithm. Each

feature should be chosen to capture some influence on the predicted variable. These features must be easy to compute
given a geometry, boundary conditions, and clinical parameters (i.e., they themselves cannot be the solution of PDE or
ODE’s), but also sufficient to give a reasonable estimate of the solution. Since it is not possible to know the sufficiency
of a feature set a-priori, we break it down to multiple steps. We first pick a set of features encompassing geometric,
clinical and analytical model based features, such as analytical solutions for pipe flow parameterized by pipe radii,
flow rate, viscosity, and length of the pipe. These features are chosen based on their relevance to prediction of FFRCT.
We test if a level of desired accuracy is reached, and if not, investigate all the failed cases to enrich the feature space.
We describe each of these factors and steps below.

Geometric features: We use a combination of local, upstream, downstream, and global geometric measures as
geometric features associated with a given point. The local geometric features used are lumen area and lumen diameter.
“Local” refers to features that depends on the centerline point under consideration, whereas “global” refers to features
that depends on the rest of the coronary tree. The general geometric features used are

• Local, upstream and downstream radius: Since pressure drop depends inversely on lumen radius, and flow rate
increases with higher lumen radius (with a fixed pressure boundary condition), local, upstream and downstream
neighboring radius are included as features. The energy loss through the current point also depends on the local
radius.

• Distance to nearest bifurcations: Since there are energy losses associated with flow-split, stagnation region, flow
stasis and recirculating regions near bifurcations, it is important to model the distance to nearest upstream and
downstream bifurcation. Distance from nearest upstream branch is important to distinguish between branching
losses and losses away from branch.

• Minimum, maximum and mean area of downstream outlets: These are important to model the effect of boundary
resistances, from which we post-process to calculate the net downstream resistance by solving the circuits in
parallel.

• Minimum upstream and downstream diameter: These are flow limiting through the current point, and hence
important to include. If both of these are very small, the net path resistance is lower. If one of these is small,
the net path resistance depends on the other paths between ostium and outlet through this point. Hence, maximum,
minimum and average upstream and downstream diameters are also included.

• Pressure recovery factor: Sometimes, the location downstream of a disease has a region of increasing area where
the kinetic energy at stenosis is converted into pressure energy. We call this a pressure recovery zone, and include
a pressure recovery factor which is the ratio of areas downstream of stenosis, to the area at stenosis.

Since the definition of radius at bifurcations is ambiguous, we use the radius of the maximum inscribed sphere
as representative of lumen radius. We ensured that all of these features contributed to the final decision tree, and are
crucial to the machine learning algorithm.

In addition to these, a health index score (κ i (x)) is calculated which is defined as

κ i (x) =
r(x)

r i
healthy(x)

where r i
healthy(x) is the theoretical healthy radius of the lumen, i = 1–15 denoting different methods of calculating

disease burden score, and r(x) is the radius of the maximum inscribed sphere within the lumen. A disease burden
score (γ i (x)) is derived from the health index score as γ i (x) = 1 − κ i (x) if κ i (x) ≤ 1 and 0 otherwise.

We calculate r i
healthy using global regression of the radii calculated in a subset of the vessel [43]. The idea is to use

global interpolation such that the healthy radii can be reasonably inferred. Stenosed regions are typically characterized
by a u-shape in the radius curve. However, since diseases could either be sharp and abrupt (acute) or long (diffuse),
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and since radii naturally have a sharp decrease at bifurcations (dictated by Murray’s law), we need a family of global
regressors to infer the health index score [43]. We use three different regressors here [44], which are explained in
Appendix A.

Patient-specific features: The blood viscosity, derived from hematocrit(hct) as µ =
µp

(1−hct/100)2.5 is used as a feature
where µp is the viscosity of plasma (µ = µp = 0.0011Pa.s. when hematocrit is zero). The height (h), weight(w),
systolic and diastolic blood pressures, and myocardial mass (mmyo) of the patient are used as additional patient-

specific features. Derived patient-specific features used are Body Surface Area (BSA) =


hw
3600 where height is in cm

and weight is in kg, inlet aortic flow rate Q = aQBSA1.15 in cm3/s, and coronary flow rate qcor = adilm0.75
myo in

cm3/s, where aQ = 1/60 is a normalizing constant and adil = 0.33 is the dilation factor.

Hemodynamic features: Using the downstream resistances and coronary flow rate, we approximate the flow rate
through each segment of the model. We describe the method for calculating net effective resistance and pressure loss
using reduced order model in Appendix B. The pressure loss model is based on the health index score, κ i (x).

2.6. Algorithm

The algorithm to calculate optimal rule set or regressor depends on the choice of regressor. We explored linear
regressor, univariate decision trees and multivariate decision trees. The optimal linear regressor can be calculated
using a standard least-squares fit algorithm. To calculate optimal decision trees (T ), we first define information gain
(G) associated with a feature, defined as:

G(FFRCT, Fk, η) = H(FFRCT) − H Fk (FFRCT, η)

where H is the entropy function and Fk is a specific feature. The entropy function for the training data is given by

H(FFRCT) = −


i

pilog2(pi )

where pi is the probability of FFR = FFRi (FFR is split into discrete intervals of size 0.01), and the entropy function
associated with a specific feature is given by

H Fk (FFRCT, η) = −


i |Fk<η

qilog2(qi ) −


i |Fk≥η

rilog2(ri )

where qi is the probability of FFR = FFRi for the subset Fk < η, and ri is the probability of FFR = FFRi for the
subset Fk ≥ η. The feature and η that maximizes gain is chosen as the decision variable and cutoff respectively. This
step is recursively repeated till there are no more features to make decision on. During each step, the information gain
is calculated on the sub-tree under consideration. We use a greedy divide-and-conquer algorithm [45] to calculate the
optimal decision tree, T . T takes a feature vector f as input and outputs the corresponding FFRML. The tree depth is
imposed by having a minimum number of allowable elements in the sets Fk < η and Fk > η. Algorithm 2 describes
the set-up of the algorithm, and the reader is referred to [45] for further details.

2.7. Implementation

For each patient, we traverse through the coronary tree to calculate all the geometric features and effective boundary
conditions described above. Two full sweeps of the coronary tree are needed, once from the root to the leaves to
calculate all upstream features and once from the leaves to the root to calculate all downstream features. Local features
and patient-specific features are also assigned in this step. Two additional sweeps starting from the root are needed,
one to calculate the flow rate and another to calculate pressure drop, since they involve a combination of upstream and
downstream indices. Algorithm 2 summarizes the basic steps involved. First, in the training mode, a function is called
to compute values of different features. The “down propagate” function involves traversing all the centerline points
from the root (ostium) to the terminal leaves. The “up propagate” function involves traversing all the centerline points
from the leaves to the root. Both of these functions are recursive. All the feature values in Table 2 can be calculated
using these steps. Derived parameters such as flow-rates and effective resistances are calculated from these, and are
also used as input features in the machine learning algorithm.
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Table 2
Independent features used in the machine learning algorithm, and their minimum, maximum, mean and standard
deviation in the training set. Distances are in mm, areas in mm2 and volume in mm3 unless otherwise specified.
Systolic and diastolic pressures are in millimeters of mercury, myocardial mass is in grams, and pressure drop
and resistances are in g/mm/s2 and g/mm4/s respectively.

Feature name Minimum Maximum Mean Standard deviation

Number of downstream bifurcations 0 28 4.243 3.645
Total downstream volume 0.034 2514 328 333
Average downstream diameter 0.54 2.77 1.68 0.30
Minimum downstream diameter 0.05 0.94 0.23 0.12
Distance to minimum downstream diameter 0.08 185 41.68 30.03
Area of nearest downstream bifurcation 0.25 22.07 4.25 2.54
Distance to nearest downstream bifurcation 0 102.85 11.14 11.47
Number of downstream outlets 1 29 5.243 3.645
Total area of downstream outlets 0.633 63.07 10.135 7.09
Inlet area 0.761 939.29 285.79 303.80
Lumen area 0.02 24.26 4.67 3.00
Mean outlet resistance 6.73 346.24 41.45 24.43
Estimated flow 0.006 1.02 0.202 0.134
Estimated pressure 9511 16000 12397 1416.4
Estimated FFR 0.4 1 0.931 0.08
Systolic pressure 100 170 127.1 15.1
Diastolic pressure 55 100 75.92 10.26
Height (cm) 148 181 166.6 7.14
Weight (kg) 47 96 69.3 9.88
Myocardial mass 64 282 123.45 35.44
Number of upstream bifurcations 0 17 4.23 2.64
Total upstream volume 0.187 11307.7 748.98 1458.72
Average upstream diameter 1.03 17.64 3.33 1.11
Minimum upstream diameter 0.151 5.484 1.79 0.74
Distance to minimum upstream diameter 0 130.99 18.58 22.54
Area of nearest upstream bifurcation 0.251 939.29 42.56 145.37
Distance to nearest upstream bifurcation 0 102.32 12.21 11.94
Distance to ostia 11.53 200.43 74.41 35.87
is stenotic 0 1 0.99 0.05
Net geometric resistance 0 11.42 0.35 0.56
Geometric resistance 0 0.763 0.003 0.01
Pressure drop estimate −91.68 8794.41 1057.92 1086.68
Worst upstream disease burden 0.12 1.00 0.684 0.159
Pressure recovery factor 1.00 2.00 1.01 0.062

Given all the patients, we split them into two sets, a training and testing set. These attributes are aggregated and
written to a training database, and analyzed using Weka [45]. The method to calculate optimal decision (REP) tree is
described in the previous section. To achieve better results in diseased segments, we perform regression on a “square”
transformation of FFRCT.

3. Results

3.1. Convergence analysis

3.1.1. Mesh convergence
To ensure convergence, we performed a mesh-independence study on 20 patients. We gradually refined the mesh

density and compared the FFRCT. Our reference solution was calculated using an average of 40 million elements.
We found that the maximum error in FFRCT fields was less than 2% when average number of elements was
around 4 million. Spatially, the mesh density depends on the cross-sectional area, and hence depends on disease
severity.
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Algorithm 2 Algorithm for calculating decision tree regressor
function COMPUTE FEATURES AND VALUES(mode, (optional)T )

for i = 1 to number of ostium do
down propagate(ostium(i), mode)

end for
for i = 1 to number of outlets do

up propagate(outlet(i), mode)
end for
function DOWN PROPAGATE(current node, mode)

calculate and update upstream properties
if is branch(current node) then

down propagate(daughter 1(current node))
down propagate(daughter 2(current node))

else
if !is outlet(current node) then

down propagate(daughter(current node))
end if

end if
if mode == TrainingMode then

Set FFR from simulation
else

Calculate FFRML = T (f)
end if

end function
function UP PROPAGATE(current node, mode)

assign and update downstream properties
if !is ostium(current node) then

up propagate(parent(current node))
end if
if mode == TrainingMode then

Set FFRML from simulation
else

Calculate FFRML = T (f)
end if

end function
end function

Training Mode
compute features and values(TrainingMode)

Compute optimal regressor
while ( do depth ofT < td )

for ∀ fi ∈ F do
if G(FFRCT, fi , η) > G∗ then

G∗
= G(FFRCT, fi , η)

f ∗
= fi

η∗
= arg maxη G(FFRCT, fi , η)

end if
end for
Add f ∗ and η∗ to the terminal leaf of T

end while
return T

Prediction Mode
compute features and values(PredictionMode, T )

3.1.2. Stochastic space convergence
We perform a convergence study in the stochastic space by comparing Monte-Carlo simulations to stochastic

collocation and adaptive stochastic collocation method. Since the number of independent stochastic dimensions for
calculating geometric sensitivity is of the order of 50, and to make it feasible to compare the different methods, we
perform a four-dimensional uncertainty analysis using the following parameters — (a) aortic blood pressure (boundary
condition at the inlet), (b) blood viscosity, (c) fraction of flow into the coronary determined by two independent
parameters, myocardial mass and a scaling constant. The objective here is to illustrate convergence of FFRCT with
respect to four simulation parameters, and compare with Monte-Carlo and tensor product grids. We define the relative
error in statistics κ as

κ =
|µ − µ∗

|

µ∗
+

|σ − σ ∗
|

σ ∗
+

|CI90 − CI∗

90|

CI∗

90

where µ is the mean FFR, σ is the standard deviation of FFR, CI90 is the right 90% confidence interval limit of FFR
(averaged over the entire model), and the superscript ∗ denotes the corresponding values obtained using converged
Monte-Carlo simulations (∼600). A comparison of number of simulations using various methods is shown in Fig. 5.
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Fig. 5. Comparison of convergence using stochastic collocation, tensor product grid, Monte-Carlo and adaptive stochastic collocation methods to
quantify uncertainty in a four stochastic dimensional patient-specific cardiovascular blood flow simulation problem. The tensor product grid line is
representative because even coarse grids can run up to thousands of simulations.

Fig. 6. Dependence of the sensitivity of FFRCT on problem discretization. Figure on the left shows sensitivity field calculated by using segmental
sensitivities, and we progressively show sensitivity fields calculated by aggregating centerline points of a certain length, irrespective of the location
of bifurcation. The number of independent segments used are (from left to right) 55, 150, 300 and 600. We are able to obtain higher spatial
resolution by choosing segments by aggregating centerline points, with a higher computational burden. However, the segmental sensitivity captures
all the regions of high sensitivity (with poor spatial resolution).

In the figure, we extrapolate results from tensor product interpolation, since the number of simulation points needed
for a level 2 is 54

= 625. The figure demonstrates that adaptive stochastic collocation method offers an attractive
tradeoff between number of simulations and convergence. A tolerance parameter of 0.01 (ϵ = 0.01) was chosen.

3.2. Solution dependence on geometry parameterization

Here, we test the dependence on the choice of geometric parameterization on the calculated sensitivity fields. To
show the impact of the chosen geometric parameterization, we perform four analyses on a patient-specific dataset
— (a) the geometry is split based on branching locations, and (b) the geometry is split based on the aggregates
of centerline points, aggregate sizes corresponding to 20, 10 and 5 respectively. The average number of centerline
points between two bifurcations is typically of the order of hundreds, hence the chosen geometric split provides finer
levels of discretization. The number of centerline points in Eq. (2), NC L , was ∼3000. Hence, the number of splits in
Eq. (3), NS , increased from 55, to 150, 300, and 600 corresponding to aggregate sizes of 20, 10 and 5 respectively.
Fig. 6 shows the sensitivity field for these four levels of parameterization. The sensitivity analysis based on branching
location splits is an upper-bound on the sensitivity values obtained with finer spatial discretization. The latter helps
focus on a smaller region at a higher computational expense. We choose the segmental sensitivity for the rest of the
paper, but depending on the application, a finer split can be used.
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Table 3
Summary of performance of different machine learning regressors to predict full
simulation FFRCT, over four combination of training and test sets (DT: decision tree,
DTR: decision tree with a linear regression rule at leaves, Def: DeFACTO dataset, Disc:
DiscoverFlow dataset). We selected the DT regression rule trained on Def as the final
machine learning regressor.

Regression rule Training set Test set ρ Mean abs. error RMS error

DT Disc Def 0.909 0.031 0.049
DTR Disc Def 0.723 0.035 0.103
DT Def Disc 0.943 0.026 0.040
DTR Def Disc 0.924 0.030 0.046

3.3. Verification of machine learning model

We split the verification of machine learning model into two steps — (i) we compare the FFRCT calculated
at different points in the centerline vessel tree using 3D simulations and ML, and (ii) we compare the effect of
perturbation of randomly chosen segments using 3D simulations and ML.

3.3.1. Comparison of FFRCT: machine learning versus 3D solution
We use the spatially averaged scalar field, FFRCT, over a cross-section from 3D simulations calculated at different

centerline points as our target variable. Our datasets comprised of two clinical trials — the DiscoverFlow trial [11] and
the DeFACTO trial [12]. We trained the machine learning algorithm using either DiscoverFlow data (90 patients) or
DeFACTO data (240 patients), and the optimal rules were calculated using Weka software. Results of the performance
are summarized in Table 3. To avoid over-fitting on the training data, and to show the efficacy of chosen features and
the regressor, we show results for different combinations in Table 3. Results were of similar magnitude when the
patients were split into 66%–34% in each of the sets (e.g. separating DeFACTO data into a training set of 158 and
testing on the rest yielded correlation coefficient of 0.943, mean absolute error of 0.026 and RMS error of 0.040). The
regression rules shown are: (i) DT, which is a decision tree and (ii) DTR, which is a decision tree but the leaves are
allowed to have a linear regression output instead of a decision value. The correlation coefficient is represented by ρ.
All the results were obtained using bootstrap aggregating [46] over 10 decision trees.

Performance of the ML regressor on the test set was similar between using DeFACTO data as test set and
DiscoverFlow as training set, as shown in Table 3, or vice versa. Most cases have correlation coefficient >0.9 with a
mean absolute error of approximately 0.03. Due to the interpolatory nature of DTR rules at the leaves, the predicted
FFRCT value could take negative values and hence can result in poor performance with smaller training datasets (as
evidenced in Table 3). Hence, we picked the decision tree regressor. This helps reduce the variance and avoid over-
fitting to the training set. Poiseuille approximation and lumen narrowing scores featured closer to the root in the final
decision tree, whereas boundary resistance and pressure recovery featured closer to the leaves. Hence, the latter can
be considered corrective sub-trees to the FFRCT predicted by Poiseuille equation.

3.3.2. Comparison of sensitivity: machine learning versus 3D solution
Since 3D simulations are relatively time consuming, calculating sensitivities by multiple runs of 3D simulations

are computationally burdensome and not feasible in a reasonable time frame. Hence, for the purpose of comparison
and verifying the sensitivity fields, we compare the solutions of perturbation analysis. Sensitivities σFFRCT are defined
as

σFFRCT =

 N
i=1

wiFFRCT
2
i − µ2

FFRCT
,

where µFFRCT =
N

i=1 wiFFRCTi is the mean FFRCT, N is the number of collocation points, and wi =


Li (ξ)p(ξ)dξ

are the weights obtained by integrating Lagrange polynomial (Li (ξ)) corresponding to collocation point i . Sensitivities
can be computed from multiple perturbation solutions (∆FFRCT). An example of a single perturbation study is
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Fig. 7. Difference in FFRCT due to uncertainty in the segment containing the stenosis. The figure also shows how FFRCT varies in the stochastic
space at two locations upstream and downstream of the stenosis. FFRCT upstream shows a drop because of higher blood flow when the stenosis
resistance is reduced, but downstream shows higher FFRCT due to lower pressure drop at stenosis.

illustrated in Fig. 7. The sensitivity can be rewritten as

σFFRCT =

 N
i=2

w̃i∆FFRCT
2
i − µ2

FFRCT
,

where w̃i are re-adjusted weights. Comparison of ∆FFRCTi calculated at randomly chosen collocation points and
coronary segments using machine learning and 3D analysis is shown in Fig. 8. The 3D perturbation analysis is
achieved by first perturbing a surface node as described in Eq. (4) in Section 2.1. A perturbation magnitude of 20% is
used. These new surface nodes are used as input to the machine learning algorithm, where the new centerline areas are
calculated using radii of maximum inscribed spheres. The correlation coefficient between predicted and actual values
in Fig. 8 is 0.92 over 20 patients and 30 segments. The mean absolute error and RMS error were 0.014 and 0.018
respectively.

Fig. 9 compares the time taken for a single simulation of N–S equations as well as sensitivity equations for a
problem of steady flow in a patient-specific coronary artery model. For a single simulation, the machine learning
algorithm computes the solution in a few seconds on a single processor workstation compared to over a half hour on
90 cores of a server using 3D simulations at a minimal cost in accuracy. For the sensitivity problem, it is infeasible to
use the 3D solver in routine clinical use which could take a few days even using 90 cores on server, while our solution
produces a sensitivity calculation in a few minutes.

3.4. Geometric sensitivity analysis

Here, we compute sensitivity to geometry by using repeated evaluations of the machine learning based prediction,
where the space of possible lumen geometries is explored using the stochastic collocation method. A segment-wise
uniform perturbation model described earlier is used. The FFRCT solution corresponding to different collocation
points is evaluated first, after which the standard deviation in FFRCT, σFFRCT is calculated at all spatial locations. We
are interested in the impact of a segment on the global FFRCT, hence we associate the maximum value of σFFRCT across
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Fig. 8. Correlation between sensitivities obtained using machine learning and through perturbation of surface mesh in the 3D model. Correlation
coefficient is 0.92.
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Fig. 9. The figure shows (left) comparison of time taken to perform a single simulation using Navier–Stokes equations in 3D and machine learning
method and (right) bar plot comparing time for the sensitivity problem using 3D simulation and machine learning, the latter reducing from more
than 5 days using 90 cores to 10 min in a single core machine. Note that for both figures, time is on log scale.

the coronary tree with a chosen segment. This value indicates the maximum impact of changing the cross sectional
area of all the lumens in the given segment, which could be either upstream or downstream of the segment. In general,
we observe that maximum changes occur downstream of the segment, though the upstream FFRCT is also affected
due to the different flow rate. Fig. 10 shows sensitivities of different segments in the coronary tree, indicating diseased
segments tend to have higher sensitivities. However, it is not necessary that all highly sensitive regions are diseased.

Sensitivity fields computed on five patients from the test set are shown in Fig. 11. The plots show that sensitivity
information can help identify and localize segments which have the most impact on predicted FFRCT in each of the
patients. Note that even segments with no or minimal disease could be sensitive, if they are critical to blood transport.
An example of critical blood transport vessel is the ostial segment, which shows high sensitivity in most situations.

In general, sensitivity varies non-linearly with respect to magnitude of perturbation. A positive perturbation of
a segment does not necessarily have the same impact magnitude as a negative perturbation. The effect of positive
perturbation is significant if a vessel is healthy or moderately diseased (akin to dilation through stenting), but this is
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Fig. 10. Figure shows different segments ranked according to their worst case impact on FFRCT in a patient-specific model. Representative
segments for high, medium, and low impact on FFRCT are magnified.

Fig. 11. Sensitivity values for five patients obtained using a 20% uniform increase in segmental area. High sensitivities are observed for diseased
regions, segments off ostium that are critical to transport and boundary segments that control the boundary resistances.

not necessarily true for a healthy segment. Similarly, the effect of negative perturbation is significant if a vessel is
healthy and it is critical to blood transport in coronary arteries. Contrast in the effect of segmental dilation and erosion
on sensitivity for a patient is shown in Fig. 12. Terminal and small vessels show a higher sensitivity to dilation whereas
all vessels critical to blood transport show a higher sensitivity to erosion. This is especially useful in long segments
with focal lesions.

4. Discussion

Sensitivity information can provide insight into the fidelity of computed results, modeling assumptions and provide
pointers to clinical information that could potentially be useful in improving accuracy of the computed fields. Due
to a combination of large computational effort involved in patient-specific CFD simulations and a large number of
uncertain parameters, existing methods are inadequate to compute sensitivities to geometry. We coupled an adaptive
collocation method with a machine learning surrogate for CFD to accelerate convergence, and hence evaluate the
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Fig. 12. Comparison of eroded and dilated sensitivity values corresponding to two extreme quadrature points on either side of mean (from left)
20%, 40%, and 60%, showing that sensitivity values are non-linear and asymmetric, with proximal vessels being more sensitive to erosion and
diseased and distal vessels of small caliber being more sensitive to dilation.

sensitivity information in almost real time. We demonstrated that adaptive stochastic collocation method has a much
faster convergence rate compared to traditional stochastic collocation and Monte-Carlo methods. While Monte-Carlo
methods make no fundamental assumption about the stochastic space representation of the fundamental variables and
might still be preferred for very high stochastic dimension (of the order of hundreds), collocation methods are able
to achieve much faster convergence rates using sparse-grid quadrature methods combined with assumption of higher-
order continuity. Functional adaptivity helps in improving the computational efficiency further. We demonstrated the
above on a problem with four stochastic dimensions and believe that the trend is indicative of behavior in higher
dimensions.

In the context of blood flow simulations in coronary arteries, the impact of change in geometry of a given coronary
segment has two basic effects — (a) impact on blood flow through that segment and rest of the coronary tree, and
(b) impact on pressure drop based on geometric resistance of the segment and (a). Blood flow rate through the entire
model depends on lumped boundary resistance and geometric resistance of the model. The latter is usually negligible,
except for diseased segments and vessels of small caliber. A representative plot of normalized radius versus flow
rate is shown in Fig. 13. When the vessel is completely occluded, the flow rate is zero and segmental resistance is
infinity. Gradually, as the radius is increased, the flow rate shows a non-linear increase (due to non-linear decrease
in segmental resistance in serial with constant boundary resistance). Slowly, the lumped boundary resistance starts
to dominate the segmental resistance. Similarly, if the lumen radius is large, segmental resistance is almost zero and
hence flow is dominated by effective downstream boundary resistance. If the radius is gradually decreased from this
value, the resistance increases and approaches the boundary resistance. Hence, segments with large radius which are
critical to blood transport are more sensitive to erosion, and diseased and segments far from aorta are more sensitive
to dilation. These phenomena were observed in the examples presented earlier.

We observed that diseased segments and arteries critical to blood transport show high sensitivity. The method
presented here describes a computationally feasible method to obtain quantitative information about the impact of
geometry on the solutions obtained from the Navier–Stokes equations. The proposed method takes only a few minutes
to compute sensitivity information, and is able to encode all the geometrically significant information. There is a small
loss in accuracy, but significant gain in computational time. Further, we are able to rank the different segments of the
geometry as well as the clinical parameters.

The ideas presented in this paper are applicable to other hemodynamic or CFD systems. Other stochastic methods
such as GPCE or simplex collocation can also be used instead of the adaptive stochastic collocation method used
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Fig. 13. Empirical relation between representative segmental radius between 0 and 1, and global flow rate (normalized to its maximum value)
for a tube geometry with boundary resistance in series. The figure shows interaction between local geometry and boundary resistance, where
patient-specific analysis is required.

here. The features used for the surrogate machine learning predictor can be used in other bio-fluids simulations
such as cerebral flow, air flow in the lungs, or even simulations such as simulating flow through porous media and
thermal transport. We expect more data to be needed to learn vector fields such as velocity or wall stress, however
the results of the machine learning method show promise to be extended to other systems. We trained the machine
learning algorithm for time averaged FFRCT. It would be interesting to study if the same features will be sufficient for
performing machine learning on three-dimensional velocity fields or if additional features are required. It is not clear
if turbulence in transient velocity data can be captured using the features described here. Yet, we showed that with
sufficient data, results from steady state low Reynolds number Navier–Stokes equation can be reasonably captured.
The main potential limitation of this approach is that the stochastic space of geometries does not encompass the
true geometry. However, due to our conservative approach in defining the stochastic space of geometries (uniform
random variable), the true geometry is not captured only in the case when the initial lumen segmentation has a large
error from the true segmentation. To mitigate this error, in our geometric modeling process (which is a controlled
manufacturing process regulated by the FDA), analysts go through sections of the model to ensure that the initial
lumen segmentation is as accurate as possible against the image data. We also only captured uncertainty in the
lumen area, since minimum lumen diameter is the most clinically relevant measure that is hypothesized to drive large
pressure changes. However, uncertainty in surface profiles also needs to be investigated, along with the development
of a geometry parameterization tool for surfaces (e.g. NURBS). The latter can also help define deformation maps at
bifurcation locations for the 3D geometry. Future work could also include defining uncertainty based on local image
quality. For example, locations of the coronary tree close to artifacts like blooming could have higher uncertainty. This
can also be used to quantify if uncertainty in two regions are correlated. We also need to validate the sensitivities using
clinical data. We can achieve this by calculating, say 95% confidence intervals and ensuring that 95% of measurement
points lies within this. This, however, requires many patient-specific data and should be investigated in the
future.

Appendix A. Healthy radius estimate

Calculation of estimate of healthy radius is performed using three different kernel regressors, with five kernel sizes
for each, making a total of 15 features, as described below.
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• global kernel fit, defined for each path from the root (ostium) to the leaves, where the healthy radius is given by

r i
healthy(x) =

Cu
x ′=Cl

N (x ′
|x, νx,i )wx ′,irx ′

Cu
x ′=Cl

N (x ′|x, νx,i )wx ′,i

where wx,i = N (rx |rx,max,i , νmax,i ), Cl and Cu are lower and upper centerline indices in the current path, i goes
from 1 to 5, and wx are weighting functions.

• segmental fit defined for each segment between branches, where the healthy radius is given by

r i+5
healthy(x) =

Cu
x ′=Cl

N (x ′
|x, νx,i )I (x ′, x)wx ′,irx ′

Cu
x ′=Cl

N (x ′|x, νx,i )I (x ′, x)wx ′,i

where I (x ′, x) = 1 if there are no bifurcations between x ′ and x , i goes from 1 to 5, and I (x ′, x) = 0 otherwise.
• anisotropic kernel fit which is defined for each path from the root to the leaves, but weighted with a sigmoidal

function centered at the nearest ostium designed to minimize the effect of sharp radius variation at the branch.

r i+10
healthy(x) =

Cu
x ′=Cl

N (x ′
|x, νx,i )S(x ′, x, i)wx ′,irx ′

Cu
x ′=Cl

N (x ′|x, νx,i )S(x ′, x, i)wx ′,i

where the sigmoidal function, S is given by:

S(x ′, x, i) =
1

1 + 3e−ki doffset(x ′,x)

and

doffset(x ′, x) = d(x ′, xostium) − d(x, xostium) − d(x, xup),

where xup is the location of the nearest upstream branch to x .

Five paired parameter set for i = 1, 2, 3, 4, 5 were chosen for each of these regressors, making a total of 15
health index scores. These are given by νx,i = 6 ∗ (1 + (i − 3) ∗ 0.4), νmax,i = 200 ∗ (1 + (i − 3) ∗ 0.4),
rx,max,i = 0.25 ∗ (1 + (i − 3) ∗ 0.4) and ki = 0.1 ∗ (1 + (i − 3) ∗ 0.4). Accurate description of disease is important
to model the appropriate pressure drop across a diseased vessel which directly impacts FFRCT. Anisotropic kernel
fit is better suited for vessels with numerous branches where radius has step changes numerous times. Global kernel
fit could over-predict healthy radius for terminal vessels, and hence predict disease even in the absence of one. The
different kernels are required to capture different disease lengths from focal (very small disease length) to diffuse
(very large segment length which could go across multiple vessels). However, global kernel fit performs better for the
main coronary arteries.

Appendix B. Reduced order model

A reduced order model is used as a feature for the machine learning algorithm. First, the net downstream boundary
condition for a segment is given by

1
Reff(x)

=


i∈ndown(x)

1
Ri

where ndown(x) is the number of downstream outlets at location x , and Ri is the downstream resistance of each
outlet. To calculate the resistance for each outlet, we assume that the resistance is inversely proportional to the area,
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hence

1
Reff

=


i∈ndown(x)

Ai

k
,

where k can be found by substituting for Reff =
Paorta
qcor

at the ostium (x = xostium), Paorta = (2Pdiastole +

Psystole)/3. Three flow rate features are used, Q1 =
Paorta
Reff

, Q2(x) = qcor
Reff(xroot)

Reff(x)
and Q3(x) = qcor

Reff(xroot)+Rgeom(xroot)
Reff(x)+Rgeom(x)

where Rgeom is the net geometric resistance downstream of a given point, obtained by
cumulating the geometric resistance of all segments between centerline points. The geometric resistance is obtained
using Poiseuille’s law as Rgeom =

8µL
πr4

avg
.

Second, we model energy loss along the model using three components — a pressure loss model, a stenotic index,
and a pressure recovery feature. Stenotic index is defined which is 1 if the average health index is less than 0.5.
Pressure loss feature depends on the stenotic index. If stenotic index is 0, then Poiseuille equation is used to model
pressure loss as

∆Pi =
8µL Qi

πr4
avg

, i = 1, 2, 3.

If stenotic index is 1, then a modified Poiseuille equation is used to model higher pressure loss in diseased locations
as

∆Pi =
8µL Qi

πr3
avg

, i = 1, 2, 3.

Hence, three pressure loss indices are computed for each of the flow rates calculated in the previous section. An
estimated FFRCT is calculated corresponding to each of these pressures. It is hypothesized that diseased regions might
have a different power law relation between pressure and flow-rate. Instead of including additional features to model
such possibilities, we include the log of the flow rate and log of the pressure drop as features.

We also introduce a pressure recovery factor, based on observations in a few patients, where pressure can recover
distal to a disease if the radius returns back to higher than the original healthy value and remains there. We define a
cutoff of 20% (chosen empirically), i.e. if the radius increases to more than 20% of its pre-stenotic healthy value, then
we define the pressure recovery factor to be Precovery =

rpost
rpre

, where rpost is the post-stenotic radius and rpre is the
pre-stenotic radius.
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