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a b s t r a c t

In computational sciences, optimization problems are frequently encountered in solving inverse problems
for computing system parameters based on datameasurements at specific sensor locations, or to perform
design of system parameters. This task becomes increasingly complicated in the presence of uncertainties
in boundary conditions or material properties. The task of computing the optimal probability density
function (PDF) of parameters based on measurements of physical fields of interest in the form of a PDF, is
posed as a stochastic optimization problem. This stochastic optimization problem is solved by dividing it
into two problems—an auxiliary optimization problem to construct stochastic space representations from
the PDF of measurement data, and a stochastic optimization problem to compute the PDF of problem
parameters. The auxiliary optimization problem is solved using a downhill simplex method, whilst a
gradient based approach is employed for solving the stochastic optimization problem. The gradients
required for stochastic optimization are defined, using appropriate stochastic sensitivity problems. A
computationally efficient sparse grid collocation scheme is utilized to compute the solution of these
stochastic sensitivity problems. The implementation discussed, requiresminimum intrusion into existing
deterministic solvers, and it is thus applicable to a variety of problems. Numerical examples involving
stochastic inverse heat conduction problems, contamination source identification problems and large
deformation robust design problems are discussed.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Stochastic optimization is the process of computing certain
parameters of a system when either these parameters are
random, some known properties of the system are random,
and/or when measurement data are given in the form of a
probability distribution function (PDF). Such stochastic problems
are rife in the context of estimating boundary heat flux and
heat transfer coefficients from temperature measurements, or
computing initial concentration (contamination source) profiles
from concentration measurements at a later time. The problem
of stochastic optimization is also encountered in robust design
problems (i.e. design problems wherein either known or unknown
parameters of the system are stochastic).
Themain goal of this work is to build an efficient computational

model that can solve stochastic optimization problems. We are
motivated by the following aspects, which have not been answered
satisfactorily in literature—(i) How to account for data (in inverse
problems) when the experiment/measurement technique is not
repeatable or the data is random, (ii) How to perform estimation
when the parameters are stochastic and (iii) How to design
control parameters of a systemwhen there is uncertainty in either
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the known or unknown parameters of a system. For example,
consider the problem where we want to design the shape of
the preform (raw workpiece) so that we minimize flash and
underfill in a forged product. The forging velocity will be uncertain
(since this is not exactly controllable) in addition to ambient
temperatures, pressures etc. It is also possible that the shape of
the preform cannot be exactlymanufactured.Wewant the process
to perform optimally in spite of such uncertainties. The same is
the case when we try to infer probabilistic heat flux based on
random temperature measurements at specific sensor locations.
Essentially, we are interested in higher order statistics which have
not been considered in previous research.
The transition from deterministic optimization problems to

stochastic optimization problems has its share of problems and
pitfalls – Howwill you find descent directions (in a gradient-based
framework) at different iterative stages in the algorithm (which
will be stochastic)? Howwill the randomdimensions be resolved –
using Monte-Carlo or more advanced techniques? The answers to
these questions are quite pertinent with respect to computational
efficiency, as well as to the amount of coding required to overhaul
existing deterministic solvers. To simplify the discussion in the
paper, we will be referring frequently to the Stochastic Inverse
Heat Conduction Problem (SIHCP), though the concept is by no
means restricted to this particular problem (this can be applied to
a broad class of robust design problems as well). Also, we use the
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terms stochastic optimization, stochastic inverse and robust design
problem interchangeably.
Deterministic techniques for solving inverse problems involv-

ing heat conduction applications are detailed in [1]. Numerical
techniques for inferring heat fluxes from temperature measure-
ments using iterative regularization schemes are discussed in [2,3].
In [4], an adjoint based approach is employed to compute PDFs of
heat fluxes based on PDFs of temperatures. A polynomial chaos ap-
proach is employed to resolve the stochastic dimensions present in
the problem. In [5], a similar problem is resolved using a Bayesian
approach.
The simplest andmost intuitivemeans to dealwith randomness

in any system is the use of Monte-Carlo techniques—compute
optimal parameters for many deterministic realizations of the
system and thereby, compute the optimal PDF of parameters.
However, the convergence of Monte-Carlo schemes is extremely
slow, and in systems where it is computationally expensive to
obtain solutions for deterministic algorithms, the task of stochastic
optimization becomes increasingly burdensome. The idea used in
this paper is based on stochastic collocation, where one carefully
chooses realizations of the system where computations will be
made such that the convergence with respect to the number
of stochastic dimensions is significantly better than Monte-Carlo
schemes. The mathematical formalism for doing the same follows
from the sparse-grid stochastic collocation scheme [6].
We develop a generic mathematical framework incorporat-

ing the sparse-grid collocation framework for solving high-
dimensional SIHCPs. In this aspect, we highlight the drawbacks of
the stochastic adjoint approach in [4] wherein a similar problem
has been dealt with—(a) inability to perform well under increas-
ingly higher-order of stochastic dimensions (b) assumption that
the data is provided directly in the stochastic space rather than
constructing this stochastic space and (c) its inability to be exten-
sible to non-linear problems wherein adjoint operators cannot be
derived (refer to Problem 4 in this paper). In [4], evaluations of the
temperatures done using the Generalized Polynomial Chaos ap-
proach (GPCE) involves a set of coupled equations. To overcome
this disadvantage, a sparse grid stochastic collocation technique is
utilized in [7]wherein the direct problem is solved at specific collo-
cation points in the stochastic space. Each direct problem is decou-
pled and hence, computational complexity is significantly reduced.
In addition, we develop a framework for computing stochastic sen-
sitivities from a series of deterministic sensitivity problems. This
is needed for computing stochastic gradients in the steepest gra-
dient descent scheme. In order to compute these, we derive a
scheme where we only compute deterministic sensitivities at spe-
cific collocation points. Another distinct advantage to using such an
approach is the minimum coding effort to overhaul existing deter-
ministic solvers and its applicability for systems with non-linear
governing equations.
The paper is divided as follows: In Section 2, we provide some

mathematical background necessary for the mathematical formal-
ism discussed in this paper. In Section 3, we provide aworking def-
inition of stochastic inverse problems. Stochastic sensitivities are
dealt with in Section 4. We discuss the mathematical procedure
for performing the task of stochastic optimization in Section 5 and
follow it up with some numerical examples for inverse heat con-
duction, inverse concentration reconstruction and robust design
problems.

2. Mathematical background

This paper requires some background into probability theory,
such as the definition of probability spaces, probability measures,
random variables and space–time stochastic processes. There are
several texts available in the literature. [8] is an excellent and
comprehensive primer on probability theory. In the framework
employed here, we define a stochastic space ξ = [ξ 1, ξ 2, . . . , ξN ]
where ξ i may represent either uniform or normally distributed
random variables. Any construct on the stochastic space has a
unique PDF associated with it, and we frequently work with
stochastic spaces as opposed to PDFs for the analysis of random
fields.
In practice, data (such as temperature measurements) is

available only as a PDF. Since we work in the stochastic space
for mathematical convenience, the following algorithm was
developed to convert a PDF, say pgiven(f ), into its representation in
the stochastic space. In this paper, we restrict ξ ′s to have either
normal or uniform distribution, though the algorithm is generic
in nature. Potentially, CDFs derived from the PDF can be utilized
to construct the stochastic space. However, this means that an
independent random variable is chosen for each sensor location,
which is both impractical as well as computationally inefficient.
Hence, the following algorithm is carried out for constructing the
stochastic space from pgiven(f ) using two choices-ξ has normal
distribution and ξ has uniform distribution:

(1) Set k = 1
(2) Set N = k and P = 0.
(a) The representation in stochastic space is given by f (ξ) =∑P

i=0 fiψi(ξ)where ξ = [ξ 1, ξ 2, . . . , ξN ]

(b) Compute the set of parameters fi by optimizing:
∫
(pdf

(f (ξ))− pgiven(f ))2df using the Nelder–Mead algorithm.
(c) If the optimal objective function is greater than tolerance,
set P = P + 1. If P ≤ 6, continue with Step 2. If P > 6,
go to Step 3. If the optimal objective function is less than
tolerance, terminate.

(3) Set k = k+ 1 and go to Step 2.

Nelder–Mead is a commonly used nonlinear optimization algo-
rithm for extremely complex search spaces which is the situation
herein. The technique employs the simplex technique at successive
iterations, and gradually approaches the optimal solution. For fur-
ther details, the interested reader is referred to [9] and MATLABTM
is employed for the solution of this problem. This does not affect
the time involved in themain algorithm, since this is used as a pre-
processing step.
As part of the solution of the stochastic inverse problems,

one needs to utilize computational tools for the solution of
direct SPDEs. The governing SPDEs are represented in general as
Lu = 0. The boundary conditions are represented as Bu = 0.
The uncertainty in the input variables is commonly represented
through a Karhunen–Loève (KL) expansion. This expansion can be
used only if the covariance function is known a priori and hence,
is only suitable for input random fields. The idea behind PCE is
to perform the spectral expansion of a random process in terms
of polynomial functions. The reader is referred to [10–12] for the
solution to SPDEs computed using the GPCE technique. The main
disadvantage of this method is that the number of terms grows
combinatoriallywith the number of stochastic dimensions, and the
equations for computing the unknown coefficients are coupled.
Since the inverse problem requires repeated solutions to such
direct problems, we utilize a recently developed technique, the
sparse grid stochastic collocation method.
In the stochastic collocation method, we compute solutions

at certain fixed locations in the multidimensional stochastic
space and use interpolating functions to represent the solutions
at other stochastic points [6,13,14]. The Smolyak’s algorithm is
a way to reduce the number of collocation points necessary
for the interpolation in the multi-dimensional random space
while simultaneously ensuring that the error does not increase
significantly. This has been explained in [7]wherein the sparse grid
interpolant is employed. Further details of the algorithm described
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Fig. 1. The figure shows a schematic of the SIHCP problem. Γ0 represents the
boundaries where the heat flux is to be computed, Γh represents the domain with
known heat flux and Di represents specific points where PDF of temperature is
provided. For robust design problems, only stages 2 and 3 are employed.

in this paper are given in [15–17]. Algorithms for integrations
based on sparse grids are provided in [18,19]. Such a sparse grid
algorithm was first used for stochastic applications recently in [7]
for tackling natural convection problems and in [20] for tackling
diffusion problems in random heterogeneous media.

3. The stochastic inverse heat conduction problem (SIHCP)

Let D be a bounded region in Rd, d = 1, 2, 3 with boundary
Γ . Let the thermal conductivity k(x, θ) and heat capacity C(x, θ)
be random fields. Let the boundary Γ be divided into Γh and Γ0
with Γh ∩ Γ0 = ∅, where Γh is the part of the boundary Γ with
known thermal boundary conditions (here, heat flux). There is no
loss of generality in this assumption since problems where there
is a boundary condition of the form T = T0 can also be dealt
with using the methodology given below. The PDF of heat flux on
the boundary Γ0 is considered unknown. We have to compute the
PDF of the unknown stochastic flux on the boundary Γ0 that yields
the PDF of the measured stochastic temperature Y (x(Di), t, θ) at
specific points Di where i = 1, 2, . . . , s, s represents the number
of sensors where data is measured (ref. Fig. 1).
The stochastic partial differential equations involved in the

direct heat conduction problem are summarized below:

C
∂T
∂t
= ∇ · (k∇T ), (x, t, θ) ∈ (D, T ,Ω),

T (x, 0, θ) = T̂ (x, θ), (x, t, θ) ∈ (D,Ω),

k
∂T
∂n
(x, t, θ) = q(x, t, θ), (x, t, θ) ∈ (Γ0, T ,Ω),

k
∂T
∂n
(x, t, θ) = f̂ (x, t, θ), (x, t, θ) ∈ (Γh, T ,Ω). (1)

The heat flux q on the boundary Γ0 is used here as a parameter.
It is apparent that for any given q, one can compute the solution
T (x, t, θ; q).
In the inverse problem, we are seeking a heat flux that

minimizes the L2-error norm between the measured and actual
temperatures as computed at the sensor locations. In particular,
one looks for a flux q̄(x, t, θ) ∈ L2(Γ0 × T ×Ω) such that:

J(q̄) ≤ J(q), ∀ q ∈ L2(Γ0 × T ×Ω), (2)

where, L2(Γ0 × T ×Ω) is the space of all mean square integrable
stochastic processes defined over the spatial and temporal domain
Γ0 and T .

J(q) =
1
2
‖T (x, t, θ; q)− Y (x, t, θ)‖2L2(Di×T ×Ω)

=
1
2

∫
T

∫
Ω

s∑
i=1

{T (x(Di), t, θ; q)− Y (x(Di), t, θ)}2dPdt, (3)

where T (x, t, θ; q) ≡ T (x, t, θ; q(Γ0, t, θ)) is the solution of the
parametric direct stochastic heat conduction problem and

∫
Ω
• dP
denotes an integral with respect to the probability measure on (Ω ,
F , P ).
The task of computing the solution to the inverse problem is

divided into the following tasks (see also Fig. 2):

(1) Pre-processing—Obtaining measurement of temperature in a
discrete form and computing its probability mass function.

(2) Stochastic optimization—
(a) Auxiliary optimization problem defined to represent the
input data in stochastic space.

(b) Solution of direct SPDEs and sensitivity SPDEs.
(c) Solution to the stochastic optimization method using
stochastic gradient based algorithms.

(3) Post-processing—Conversion of discrete problemparameters to
their respective PDFs.

4. Stochastic sensitivities

4.1. Definition

The main difficulty in solving the optimization problem
defined in Eq. (3) is the calculation of the gradient J′(q) of
the cost functional in the function space L2(Γ0 × T × Ω).
Stochastic sensitivities are interpreted as the change in PDF of
the temperature at the sensor locations when the PDF of the heat
flux q is perturbed. The sensitivity temperature field (directional
derivative) Θ(x, t, θ; q,1q) ≡ D1qT (x, t, θ; q) is defined as
the linear part in 1q in the Taylor expansion of the process
T (x, t, θ; q+1q) i.e.

T (x, t, θ; q+1q) = T (x, t, θ; q)+ D1qT (x, t, θ; q)

+O(‖1q‖2L2(Γ0×T ×Ω)) (4)

where1q ≡ 1q(x, t, θ).

4.2. Governing equations

The stochastic sensitivity problem is defined by linearization
of the system of Eq. (1). The governing equations for computing
the sensitivity of the temperature with respect to the heat flux are
summarized below (refer [4]).

C
∂Θ

∂t
= ∇ · (k∇Θ), (x, t, θ) ∈ (D, T ,Ω),

Θ(x, 0, θ; q,1q) = 0, (x, θ) ∈ (D,Ω),

k
∂Θ

∂n
(x, t, θ; q,1q) = 1q(x, t, θ), (x, t, θ) ∈ (Γ0, T ,Ω),

k
∂Θ

∂n
(x, t, θ; q,1q) = 0, (x, t, θ) ∈ (Γh, T .Ω). (5)

It is to be noted that1q(x, t, θ) drives the sensitivity problem and
hence, it is important to define it numerically.

4.3. Numerical definition of perturbations

There are a number of issues regarding the numerical imple-
mentation of stochastic sensitivities which include—(i) What is
1q?, (ii) How do you ensure that q+1q remains normalized and
(iii) Which technique is used to solve the set of Eq. (5). Stochas-
tic sensitivities are essential to solve stochastic optimization prob-
lems using gradient-based approaches. Since 1q is a stochastic
field, we explore if this perturbation can be defined by either per-
turbing specific coefficients in its spectral expansion or values of q
at collocation points.
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Fig. 2. The figure shows a schematic of the technique used to solve the SIHCP problem.
4.3.1. Method I: Perturbation of spectral coefficients
The unknown random parameters are represented as:

q(x, t, θ) =
N∑
i=0

qi(x, t)ψi(ξ). (6)

The perturbation1q can be defined using perturbations to qi. This
is because the resultant PDF will still be normalized, as justified
below.
Normalization: Let pdf (.) be denoted as h(.) and let cdf (.) be

denoted as H(.). We have:

h(q) =
∂H
∂q
, (7)

where H(q̂) = Prob(
∑N
i=0 qiψi(ξ) ≤ q̂). Hence,∫

∞

−∞

h(q)dq =
∫
∞

−∞

∂H
∂q
dq = H(∞)− H(−∞) = 1. (8)

Note that the GPCE should not be interpreted as a direct
representation of the PDF and hence, normalization is not an
explicit constraint while using GPCE. The spectral coefficients
themselves do not lend any constraints to make the PDF
normalized.

4.3.2. Method II: Perturbation of heat flux at collocation points
Perturbation in a collocation coefficient of a stochastic variable

implies a valid perturbation of the PDF of the stochastic variable by
ensuring its normality. Let us consider interpolation of the heat flux
qwith Lagrange polynomials using the Smolyak quadrature rule:

q(x, t, ξ) =
∑
qi(x, t)Li(ξ). (9)

The proof directly follows from the relations given in the
previous part. The only dependence on ξ lies in the interpolating
function Li(ξ). Hence, each coefficient qi(x, t) may be perturbed
independently and arbitrarily.
We can associate a specific 1q(x, t, θ) with either perturba-

tions to its GPCE coefficients or perturbations at specific colloca-
tion points as shown in Fig. 3. We also show how a perturbation in
the collocation space can be converted into a corresponding per-
turbation in the GPCE coefficients. If1q(x, t, θ) = 1qs(x, t)ψs(ξ)
for some s, then 1qs(x, t)ψs(ξ) =

∑
i1q(x, t, ξi)Li(ξ) where the

ξi’s are the cubature points and ξ is any arbitrary point in the ran-
dom support space. From the last equationwe can then derive that
the perturbation at each collocation point is given as:

1q(x, t, ξi) = 1qs(x, t)ψs(ξi). (10)
4.3.3. Implementation in spatial and temporal coordinates
In both the schemes dealt with in the previous section, the

perturbation of the coefficients are in the form: 1qi(x, t). We
show how this perturbation will be implemented numerically.
q(x, t) will be represented using its value at specific points in
space and time q(xj, tk). The continuous field q(x, t) is extracted
from q(xj, tk) by using linear interpolants in space and time. Finite
element and finite-difference schemes are utilized for space and
time, respectively. We sequentially choose1qi(x, t) ≡ 1qi(xj, tk)
for each i. Hence, the number of sensitivity problems computed for
each i is the product of the number of spatial and temporal degrees
of freedom (DOF). Also, 1qi(xj, tk) = δ, if x = xj and t = tk and 0
otherwise. δ is chosen to be 0.001 in all our computations.

4.4. Solution to the sensitivity equations

Using the stochastic collocation technique, the sensitivity field
as defined in Eq. (5) is here represented as Θ(x, t, ξ; q,1q) =∑
iΘ(x, t, ξi; q,1q)Li(ξ) where each of the Θ(x, t, ξi; q,1q) is

defined from the solution of a deterministic sensitivity problem as
given in Eq. (11).

C
∂Θ(x, t, ξi; q,1q)

∂t
= ∇ · (k(ξi)∇Θ(x, t, ξi; q,1q)),

Θ(x, 0, ξi; q,1q) = 0 (x, θ) ∈ (D,Ω),

k(ξi)
∂Θ(x, t, ξi; q,1q)

∂n
= 1q(x, t, ξi) x ∈ Γ0

k(ξi)
∂Θ(x, t, ξi; q,1q)

∂n
= 0 x ∈ Γh. (11)

Similarly, using perturbations to the GPCE coefficients, the
sensitivity field can be represented as Θ(x, t, ξ; q,1q) =∑
iΘ(x, t, ξi; q,1q)ψi(ξ) where each of the Θ(x, t, ξi; q,1q) is

defined from the solution of a deterministic sensitivity problem as
given in Eq. (12).

C
∂Θk(x, t, θ; q,1q)

∂t
=

∑
j

∇ · (〈k(x, θ)ψj(θ)ψk(θ)〉∇Θj(x, t, θ; q,1q)),

Θk(x, 0, θ; q,1q) = 0, (x, θ) ∈ (D,Ω),

〈k(x, t, θ)ψj(θ)ψi(θ)〉
∂Θj(x, t, θ; q,1q)

∂n
= 1qi(x, t), x ∈ Γ0

〈k(x, t, θ)ψi(θ)ψj(θ)〉
∂Θi(x, t, θ; q,1q)

∂n
= 0, x ∈ Γh. (12)
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Fig. 3. The figure shows how a specific1q can be associated with (a) on the left, the perturbation of GPCE coefficients of the heat flux and (b) on the right, the perturbations
of heat flux at specific points in the stochastic space.
Note that the equations for Θ are uncoupled in Eq. (11) while
they are coupled in Eq. (12). While the stochastic collocation
technique was employed for solution of stochastic sensitivity PDE
in Eq. (11), the GPCE technique was employed in Eq. (12).

4.5. Discrete optimization problem

It is apparent that the stochastic optimization problem
explained in the previous section has to be posed discretely so that
numerical schemes can be used to compute the solution. We have
shown how each DOF – the spatial, temporal as well as stochastic
dimensions – will be discretized. Hence, we are interested in
finding the tuple, qv = [q0q1 . . . qN−1qN ] so as to minimize the
objective function, J(q) (q is trivially constructed from qv by using
the corresponding interpolant).
As a result, we reduce the problem to the following form in the

stochastic space (qi here refers to the values of q at the cubature
points):

q∗v = argmin
qi

J

(
x, t, ξ;

∑
i

qiLi(ξ)

)
. (13)

A similar problem can also be defined by using the spectral
expansion on q (qi here refers to coefficients of q in its GPCE
expansion).

q∗v = argmin
qi

J

(
x, t, ξ;

∑
i

qi.ψi(ξ)

)
. (14)

In this work, we will concentrate on the problem of Eq. (13).
For a gradient optimization approach to this problem, wewill need
to utilize sensitivities of the form: Sjki(x, t) =

Θ(x,t,ξi;q,1q(xj,tk,ξi))
1q(xj,tk,ξi)

,
where the continuum sensitivityΘ is here defined as the solution
of Eq. (11) evaluated for the specific1q as defined.

5. Optimization scheme

As we had discussed earlier, the aim is to compute a flux
q̄(x, t, θ) ∈ L2(Γ0 × T ×Ω) such that:

J(q̄) ≤ J(q), ∀ q ∈ L2(Γ0 × T ×Ω). (15)

The strategy employed here is built on (a) the ability to solve
stochastic optimization problems with minimal overhaul of
existing deterministic codes and (b) be versatile enough to work
for a wide range of PDEs. To satiate this need, we employ only
direct and sensitivity PDE’s for computing the optimal solution.
It is to be noted that the efficiency of the optimization algorithm
can be improved for specific problems by solving an auxiliary set
of equations. For instance, the use of adjoint equations may be
utilized in a SIHCP setting wherein conjugate gradient algorithms
could be employed. However, the derivation of adjoint operators
may not be feasible in complex fluid flow problems, and it is in
this spirit that we stick to employing steepest descent schemes
in this work. This ensures that the algorithm is generic in nature,
while more sophisticated algorithms can be derived for specific
problems.
The objective function can be written as:

J(q(x, t, ξ)) =
1
2

s∑
k=1

∫ ∑
i

∑
j

(T (x(Dk), t, ξi)

− Y (x(Dk), t, ξi))(T (x(Dk), t, ξj)

− Y (x(Dk), t, ξj))dt
∫
Li(ξ)Lj(ξ)dξ, (16)

where
∫
.dξ implies that the integration is done as

∫
.pdf (ξ)dξ.

The integrals of the form
∫
Li(ξ)Lj(ξ)pdf (ξ)dξ are computed using

Monte-Carlo schemes.
The steps to be followed in performing the task of stochastic

optimization are summarized below. (The measure Sjki drives the
optimization procedure which indicates the variation of physical
fields when parameters at specific points in space, time and
stochastic space are perturbed.)

(1) Initialize values for q(xj, tk, ξi), q0(xj, tk, ξi) = 0. Set k = 0.
The heat flux is q0(xj, tk, ξ) =

∑
i q
0(xj, tk, ξi)Li(ξ).

(2) Solve the direct problem to compute the objective function
J(qk(x, t, ξ)). Terminate if k > 0 and J(qk+1)− J(qk) < tol.

(3) Solve a set of X × M sensitivity problems where X rep-
resents the number of spatial and temporal discretizations
and M denotes the stochastic discretizations of q. Com-
pute Sjki(x, t) (defined earlier) and dijk = ∂J

∂q(ξi,x̃j,t̃k)
=∑s

m=1
∑
n

∫
(T (x(Dm), t, ξn; q) − Y (x(Dm), t, ξn))Sjki(x(Dm),

t)dt
∫
Li(ξ)Ln(ξ)dξ where dijk is written in the form of a vec-

tor, say ds where s traverses the whole range of ijk.
(4) Update k = k + 1. qki (xj, tk) = qk−1i (xj, tk) + αdijk where

α = − dT d
dT Rd
. If s = ijk and t = lmn, then Rst =

∑s
m=1

∫
Sijk

(x(Dm), t)Slmn(x(Dm), t)dt . Go to step 2.

NOTE: It is to be noted that a similar technique can also be
established by utilizing the GPCE scheme for representing the
unknown heat fluxes.
For the solution of eigenvalue problemswhile using Karhunen–

Loeve expansion, the SLEPC parallel eigenvalue solver was utilized.
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In addition, all computations utilized the PETSC library and
were parallelized using MPI. The computing clusters available
in Cornell Theory Center (CTC) were utilized for performing the
computations.

6. Numerical examples

6.1. Example 1

A Gaussian triangular heat flux (see Eqs. (17) and (18)) is applied
at the left end of a one-dimensional heat conducting rod of length
L = 1 units while the right end is insulated (motivated from [4]). The
temperature is measured at a specific sensor location at x+ = 0.3 in
the time interval [0, 1] and it is desired to reproduce the flux based on
these temperature measurements.

q+tri =

2.5t
+, 0 ≤ t+ ≤ 0.4

2.0− 2.5t+, 0.4 ≤ t+ ≤ 0.8
0, t+ > 0.8

(17)

q+ = N (q+tri, 0.1q
+

tri). (18)

The systemof direct governing equations are given in Eq. (1) and
the system of sensitivity governing equations are given in Eq. (5).
The temperature measurements are taken at a point, x+ =

d+ = 0.3 for all times t+ ∈ T = [0, 1]. Deterministic
values of k+ = 1 and C+ = 1 were used. An explicit finite
difference technique (central-difference in space and forward
difference in time) with space discretization of 1x+ = 0.0025
and time discretization 1t+ = 0.025 was used along with
Monte-Carlo technique for obtaining the random temperature
‘measurements’ (100 temperature measurements at each time).
The auxiliary optimization scheme was run to convert the
temperature measurements to its representation in the stochastic
space. Since the randomness comes due to a Gaussian variation of
the heat flux (Eq. (18)), a value ofN = 1was sufficient to represent
the input randomness. The PDF of the temperature at the sensor
location at a specific time and its representation in the stochastic
space are shown in Figs. 4 and 5, respectively. It is to be noted
that in Fig. 5, the stochastic space construct for measurement data
was done using a linear polynomial where ξ is a normal variable.
For visualization purposes, since the support is not finite, it was
transformed into the uniform interval from 0 to 1. This is done by
using the transformation ξ̂ = erf (ξ)+1

2 where erf (.) is the error
function.
The stochastic optimization scheme chalked out in this paper

was utilized to compute the optimal PDF of heat flux based on
the PDF of temperatures. For the solution of direct and sensitivity
problems that are required during the optimization procedure,
a space discretization, 1x+ = 0.025 and a time discretization,
1t+ = 0.025 were used in a finite element framework with
linear two-noded elements. Results using the SC and GPCE based
optimization algorithms are shown in Figs. 6 and 7 respectively.
For performing stochastic optimization using the sparse grid
collocation scheme, we used a depth of interpolation 8, and for
solving using the polynomial chaos scheme, a third-order GPCE
expansion was used.
In Figs. 6 and 7, it is clear that the first four moments of the

heat flux is captured sufficiently. It is to be noted that there is a
difference noticed at the peak value owing to a step change in the
derivative. The same trend is also noticed in [1] and some problems
in [4] as shown in Fig. 8 (where the solution is exactly the same
everywhere except the peak values where a small error is noticed).
It is clear that the stochastic optimization framework developed is
accurate enough to capture randomness in the heat flux.
Fig. 4. The figure shows comparison of the measurement PDF with the PDF
constructed by solving the auxiliary optimization problem at time t+ = 0.2.

Fig. 5. The figure shows representation of measurement temperature in the
support space (the corresponding PDF for t+ = 0.2 is shown in Fig. 4).

NOTE: We show numerically that both the optimal heat flux as
well as sensitivities computed at different stages in the spectral
and collocation algorithms are identical. We construct a set of
numerical tests wherein different1q’s are constructed by varying
different coefficients in the GPCE expansion. Table 1 uses the
measure Sjki(x, t) =

Θ(x,t,ξi;q,1q(xj,tk,ξi))
1q(xj,tk,ξi)

. In Table 1, we use
Sijk(0.3, 0.025) where the arguments mean that sensitivities are
computed at the point x = 0.3 and time t = 0.025. Also, the
indices in the subscript denote how the heat flux was perturbed,
as explained below:

(1) Sjki(., .) indicates a heat flux which is perturbed at x = xj,
t = tk and ξ = ξi. Since this is a one-dimensional problem,
xj = 0 is the only point where we have a boundary heat flux
and we specify the perturbation to be at tk = 0.

(2) Each row in Table 1 indicates perturbation of a specific
GPCE coefficient. d is used to indicate the dimensionality of
the problem and δp indicates which term is perturbed (the
perturbation has a magnitude of 0.001). For instance, a value
of δp = 3 in the table means that the third GPCE term was
perturbed, which is 0.5 ∗ (3ξ 2 − 1) for Legendre polynomials.
Using Eq. (10), the same was converted into perturbations at
different stochastic collocation points (chosen as Chebychev
points with a depth of interpolation, 8).

(3) The measure Sjki(., .) is computed from Θ(.) which is
computed using both the GPCE as well as collocation
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Fig. 6. The figure shows comparison of the optimal flux computed using the SC scheme with that of the actual heat flux (the first four moments). Note that nth moment
means E(.)n where E denotes expectation operator.
techniques, as defined in Eqs. (12) and (11) respectively. For
stochastic collocation, statistics of Sjki(., .) are constructed and
shown in Table 1 (the statistics are taken over the index i
since i represents ξ). For GPCE, the values shown are statistics
of Θ(xj,tk,ξ;q,1q)0.001 . These computed statistics are denoted by 〈x〉
(mean), 〈x2〉 (second moment) and so on in Table 1.

6.2. Problem 2: Two-dimensional SIHCP on a rolling body

In this section, a practical application of the SIHCP is discussed.
Here, we consider rotating bodies that are subject to a boundary
heat flux (Fig. 9). It is desired to reconstruct the heat flux based on
certain temperature sensors within the rolling body.
Problem definition: A two-dimensional rolling body (Fig. 9(a)) is

subject to a unknown heat flux in one-quadrant on the outer boundary
(−3π/4 ≤ θ ≤ −π/4 where θ is measured from positive x-axis).
The inner-boundary is insulated while the rest of the outer boundary
is subject to a constant temperature of T = 25 ◦C. The problem is to
recompute the PDF of heat flux given temperature measurements at
four points as shown in Fig. 9(b). The inner radius is 1.5 m while the
outer radius is 3.0m. The temperaturemeasurements aremade at r =
2.8 m and θ = −135◦,−45◦, 45◦, 135◦. The thermal conductivity
is taken to be random with a given exponential correlation function.
The physical problem is treated as quasi-static.
The following are the problem parameters used for this prob-

lem: Number of sensor nodes = 4, number of stochastic dimen-
sions for thermal conductivity, which are known = 4 (obtained
using eigenvalue decomposition and extracting eigenmodes with
99.5% energy), number of unknowns in the equivalent determinis-
tic optimization problem= 35360, number of spatial nodes where
the heat flux is unknown= 32.
We assume a quasi-steady state problem. Hence ∂T

∂t = 0
and we do not consider boundary conditions containing time as
a parameter. Naturally, the stochastic optimization algorithms
detailed, are reduced to a simpler form owing to the absence of
a temporal dimension.
Such problems occur frequently in processes such as rolling,

where it is desired to compute heat fluxes at the roll contact
regions. During the rolling process formanufacturing components,
many practical problems such as the wear of the rolls, amount of
coolant required at the contact zone, and stresses induced in the
workpiece, aswell as the rolls, is determined by the amount of heat
generated at the contact zone. However, it is impractical to directly
place thermo-couples in the contact zone, since they can easily
wear away. Hence, a practical solution to this problem is to embed
thermocouples within the rolls and recompute the heat flux on the
boundary using temperature measurements within the body.
We use a random thermal conductivity defined by an exponen-

tial correlation of correlation length, 10, f (r) = exp(−r/10). The
thermal conductivity, k, has the following expansion:

k(r, θ, ξ) = k0(θ)+
∞∑
i=1

√
λiξi(θ)ki(x). (19)

The resultant eigenvalue problem was solved and the first four
modes of kwere used in the final analysis, based on the eigenvalue
decomposition. Some specific samples of conductivity are shown
in Fig. 10.
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Fig. 7. The figure shows comparison of the first four moments of the optimal flux computed using the GPCE scheme with that of the actual heat flux.
Fig. 8. The figure shows the mean and standard deviation of the heat flux computed using the adjoint method [4].
The temperature measurements obtained using the direct
problem are solved using the computational method given in [21].
For the measurement data, the heat flux at the boundary is taken
as Gaussian for obtaining PDF of temperature measurements. This
is of the form qmean(θ) = 100((π4 )

2
− (θ − 3π

2 )
2) and q ∼

N (qmean, 0.1 × qmean). A central finite difference scheme in a
two-dimensional grid was employed with a Monte-Carlo scheme
(1000 measurement samples) for computing PDF of temperature
data. The auxiliary optimization problem converged within one
additional dimension over that of the thermal conductivity (which
is assumed known in the inverse problem too) due to the Gaussian
nature of the heat flux.
The task of recomputing the heat flux is posed as an

optimization problem. During optimization, a finite element
scheme with linear triangular elements is used for the solution
of direct and sensitivity problems. The governing equations of the
problem in cylindrical coordinate systems are given by:

1
r
∂

∂r

(
rα
∂T
∂r

)
+
1
r2
∂

∂θ
α
∂T
∂θ
− ω

∂T
∂θ
= 0, (20)
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Table 1
The table shows a comparison of stochastic sensitivities computed using two methods—the GPCE technique and the collocation technique for a perturbation in a specific
term of the GPCE expansion, δp. SGSC refers to sparse grid stochastic collocation and d refers to stochastic dimension.

Case 〈x〉GPCE 〈x〉SGSC 〈x2〉GPCE 〈x2〉SGSC 〈x3〉GPCE 〈x3〉SGSC 〈x4〉GPCE 〈x4〉SGSC

d = 1, δp = 1 0.2870 0.2870 0.0824 0.0824 0.0236 0.0236 0.0068 0.0068
d = 1, δp = 2 0.0000 0.0000 0.0272 0.0274 0.0000 0.0000 0.0013 0.0013
d = 1, δp = 3 0.0000 0.0000 0.0164 0.0164 0.0013 0.0013 0.0006 0.0006
d = 2, δp = 1 0.2870 0.2870 0.0824 0.0824 0.0236 0.0236 0.0068 0.0068
d = 2, δp = 4 −0.0007 −0.0007 0.0916 0.0916 0.0000 0.0000 0.0027 0.0027
d = 2, δp = 8 −0.0000 0.0000 0.0055 0.0055 0.0000 0.0000 0.00012 0.00012
d = 3, δp = 7(×10−1) −0.0000 0.0000 0.0915 0.0915 0.0000 0.0000 0.00271 0.00272
d = 3, δp = 16 −0.0007 −0.0007 0.0916 0.0916 0.0000 0.0000 0.0027 0.0027
d = 3, δp = 20 0.0000 −0.0001 0.0118 0.0118 0.0000 0.0000 0.0003 0.0005
Fig. 9. (a) Mesh used for generating temperature data using forward differences
and (b) Mesh generated for the optimization problem. The sensors are numbered,
starting from the fourth-quadrant (clockwise) as: 1, 2, 3 and 4.

Fig. 10. Some samples of the thermal conductivity within the rolling specimen.

with the boundary conditions: k ∂T
∂r = 0 when r = ri, k

∂T
∂r = q(r)

when r = r0,−π
4 ≤ θ ≤

π
4 and T = Tcons for all other θ .w denotes

the angular velocity and α is the thermal diffusivity.
The objective function is plotted as a function of iterations,

as shown in Fig. 11 wherein a collocation scheme with depth of
interpolation 5 was utilized. The convergence shown is also good
(see Figs. 12 and 13).
Once the optimized values of the heat flux were obtained, we

compared the temperature statistics at the four sensor locations
of the optimized heat flux with the one used originally for the
direct problem. Table 2 shows the comparison of these values until
the fourth moment. It is apparent that the detailed methodology
captures the stochastic nature of the temperature profiles. Figs. 19
and 20 show the comparison between the first fourmoments of the
temperature profile for the actual and reconstructed temperature
profile.
Further, we compare the mean heat flux in Fig. 14 and the

second moment of heat flux in Fig. 15. The reason for such a large
variation, as shown in the figures, is due to the fact that we do not
have sufficient sensors along the contact region.However, it is clear
that the objective function for this heat flux is almost 0.
To test if the effect shown above was due to an insufficient

number of sensors alone, we solved the same problem, but now
Fig. 11. Objective function computed at different iterations for IHCP problem on a
rolling body.

with an increased number of twelve sensors (eight additional
sensors in the contact region). Figs. 16 and 17 show the results
with an increasednumber of sensors. It is clear from the results that
an important reason for the inadequate reconstruction using four
sensors was the insufficient number of sensors, and as we obtain
more information, we can reconstruct the actual profile of the heat
flux better.

6.3. Problem 3: 2D concentration reconstruction in porous media

In this section, stochastic inverse problems for 2D reconstruc-
tion of concentration profiles is undertaken. There is a porous
medium and some contaminant is injected into it. Based on the
concentrationprofile of the contaminant at a later time, it is desired
to reconstruct the initial contaminant concentration. Here, we deal
with a stochastic version of this problem,which is defined as: Com-
pute the PDF of concentrations at a specific time based on concentra-
tion PDF’s at certain sensor locations at a later time. Herein, we deal
with uncertainties in initial source concentration. This stochastic
inverse problem is posed as a stochastic optimization problem, and
the methodology detailed in this paper is utilized for computing
the solution. For similar problems which were tackled before, the
reader is referred to [22–25].
The equations which govern flow in porous media (originating

from conditions of mass balance) are given below

φ
∂c
∂t
+∇ · (cu)−∇ · (D∇c) = c̃q, c ∈ (D, T ,Ω), (21)

∇ · u = q, t ∈ [0tl] (22)

u = −
K(x)
µ(c)
∇p,

c(x, 0, ξ) = c0(x, ξ),
D∇c · n = 0, t ∈ [0 tl],
∇u.n = 0, t ∈ [0 tl].
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Table 2
The figure shows the comparison of temperature statistics at the four sensor locations shown before.

Sensor
location

〈T (xd)〉
computed

〈T (xd)〉
actual

〈(T (xd))2〉 −
〈T (xd)〉2 computed×
1e−2

〈(T (xd))2〉 −
〈T (xd)〉2 actual ×
1e−2

〈(T (xd))3〉 −
〈T (xd)〉3 computed×
1e−3

〈(T (xd))3〉 −
〈T (xd)〉3 actual ×
1e−3

〈(T (xd))4〉 −
〈T (xd)〉4 computed×
1e−4

〈(T (xd))4〉 −
〈T (xd)〉4 actual×
1e−4

1 45.6594 47.3247 21.154 22.804 99.791 112.32 481.201 567.39
4 25.86 25.975 6.687 6.7475 17.30 17.53 44.73 45.54
3 25.109 25.125 6.305 6.313 15.830 15.861 39.748 39.85
2 26.559 26.703 7.056 7.133 18.756 19.059 49.870 50.943
Fig. 12. The figure shows (a) top, the comparison ofmean temperature profiles using the optimizedheat fluxwith that using the original heat flux and (b) bottom, comparison
of the second moments.
Fig. 13. The figure shows (a) top, the comparison of third and (b) bottom, fourth moments of temperature profiles of the optimized heat flux versus the actual value of the
heat flux used.
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Fig. 14. The figure shows comparison of mean heat flux recomputed using the
stochastic optimization algorithm.

Fig. 15. The figure shows comparison of second moment of heat flux recomputed
using the stochastic optimization algorithm.

Fig. 16. The figure shows comparison of mean heat flux recomputed using
the stochastic optimization algorithm using twelve sensors around the rolling
specimen.

In the problem definitions, c represents concentration, u repre-
sents velocity, q denotes volume flux rate at the wells, and c0
represents the initial concentration profile. The anisotropic disper-
sion coefficient, D, is given by: D = φ{αmI+ ‖ u ‖ [αlE(u) +
αt(I − E(u))]} where E(u) = 1

‖u ‖2
u ⊗ u. αm, αl and αt repre-

sent the molecular diffusivity, longitudinal dispersion coefficient
Fig. 17. The figure shows comparison of second moment of heat flux recomputed
using the stochastic optimization algorithmusing twelve sensors around the rolling
specimen.

and transverse dispersion coefficient, respectively. µ represents
the dynamic viscosity of the resident fluid, and the variable φ rep-
resents the porosity of the medium and is utilized to account for
the fact that the effective area for flow is reduced in a porous
medium. The initial concentration c0(x, y) is taken of the form:
c0(x, y) = e(−((x−xc (ξ))

2
+(y−yc (ξ))2)/2/σ 2) for simulating measure-

ments. The set of sensitivity equations can be derived from the set
of direct Eqs. (21) and (22) as follows:

φ
∂C

∂t
+∇ · (Cu)−∇ · (D∇C) = C̃q, C ∈ (D, T ,Ω),

C(x, 0, ξ) = 1c0(x, ξ),
D∇C · n = 0, t ∈ [0 tl].
∇u.n = 0.

(23)

C represents the stochastic sensitivity of concentrations with
respect to perturbations in c0(x, ξ). In both the problems that
follow, the values of some parameters are chosen as: q =
0.04, αm = 0, αl = 0.04, αt = 0.004, σ = 0.1. Stabilized
SUPG finite element formulation is utilized for the solution of the
direct and sensitivity problems. Numerical details for solving these
equations are provided in [26,27].
Problem definition: We consider the task of reconstruction of

initial concentration profile in a porous medium t0 = 0 based
on concentration measurements at a different time, tl = 0.1. The
governing equations are given in Eq. (22). The domain is of size
[0, 8] × [0, 8]. xc(ξ) and yc(ξ) were chosen as Unif [0.15 0.35] and
Unif [0.275 0.475], respectively.
Physically, the source of initial concentration is not determin-

istic due to small perturbations or noise in its location. This is be-
cause the contaminant cannot be injected at a point and, depend-
ing on the inlet size of the injector, the location of injected fluid
has some uncertainty associated with it. Wemodel this as uniform
randomness in xc and yc .
We generate measurement data using a 64 × 64 grid (with a

time step of 0.0025) and choose data at points corresponding to
the sensor nodes of a 32 × 32 grid (i.e. information at every other
nodal point is extracted). This generateddata is available as a PDFof
concentration at sensor locations by obtaining 500 measurements
using Monte-Carlo sampling technique. The task is to recompute
the concentration at time, t = 0, and hence the concentrations at
any other time using the concentration data at t = 0.1 (see Fig. 18).
As a first step, the auxiliary optimization problem was solved

to construct the stochastic space, based on measurement concen-
trations. The auxiliary problem converged at two stochastic di-
mensions using Hermite polynomials. Though the trends between
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Fig. 18. The figure shows convergence of the objective function for the
inverse problem of estimation of initial concentrations based on concentration
measurements at a later time.

the PDF of measurement data and that constructed using the sup-
port space representation are almost the same, the values are dif-
ferent at certain locations in the collocation space. This can be
improved only by choosing non-polynomial schemes for represen-
tation of the support space such as representation using wavelet
bases. For instance, the mean and standard deviation at the loca-
tion 0.25, 0.375 was 0.6004 and 0.0414, respectively while that
of the reconstructed distribution was 0.6054 and 0.0480, respec-
tively. The stochastic optimization problem is driven by this sup-
port space representation.
The inverse problem of computing the PDF’s of co(x, ξ) based

on concentration measurements at a later time instance, is posed
as a stochastic optimization problem to minimize the objective
function:

J(c0(x, ξ))

=
1
2
‖c(x, t, ξ; c0(x, ξ))− cm(x, t, ξ)‖2L2(Di×T ×Ω)

=
1
2

∫
t

∫
Γ

∫
Ω

{c(x, t, ξ; c0(x, ξ))− cm(x, t, ξ)}2dPdx dt. (24)

Here cm represents the PDF of measured concentrations at
the sensor locations. Also, note that for the current example,
the integral over t becomes superfluous since we measure
concentrations at just one time instance. This objective function
is rewritten in the following form:

J(c0(x, ξ))

=

∫ [∑
i

∑
j

∫ ∫
(c(x, t, ξ; c0(x, ξ))

− cm(x, t, ξ; c0(x, ξ)))2dt ×
∫
Li(ξ)Lj(ξ)dξ

]
dx. (25)

The actual values of the concentration at initial time is computed
using:

c̃0(x, ξ) = argmin
c0(x,ξ)

J(c0(x, ξ)). (26)

The stochastic optimization technique using a fifth level sparse
grid collocation scheme was employed. The problem reduces to
a deterministic optimization problem of dimensions 148480. The
direct and sensitivity equations are solved during the optimization
routine by using a spatial and temporal discretization of 32 × 32
and 0.005 respectively. Themean and the standard deviation of the
reconstructed concentrations at t = 0.1 and t = 0.8 are shown
in Fig. 19. The results show a good comparison of the first two
moments with the measurement data.
A comparison of the PDF of the computed and the measured

concentrations is shown in Fig. 20. The difference is mainly due
to the polynomial approximation of the support space for the
measurement data. To further improve upon the accuracy, a more
general basis such as wavelet functions should be used in the
support space. However, it is clear that the profile of the PDF is
captured.

6.4. Problem 4: Robust design of deformation processes

We adapt themethodology, stated above, to perform robust de-
sign of deformation processes. In large deformationmanufacturing
processes such as forging, it is necessary to ensure that the qual-
ity of the final product is good, and that the cost involved in the
production of the product is minimized. This has to be done in the
presence of diverse sources of uncertainties such as friction coef-
ficient, forging velocity, initial preform shape etc. These processes
are governed by constrained stochastic partial differential equa-
tions (the constraints originate due to the presence of forming dies
and the P.D.E.’s are stress equilibrium equations).

σij,j + bi = 0; u ∈ U (27)

whereU is the allowable space of deformations, arising due to the
presence of dies. The reader is referred to [28] for further details
on the mathematical formalism to solve such equations. We now
define a robust design problem in such a context, as follows:

J(β) =

∫
(α1(flash(ξ))+ α2(underfill(ξ))) p(ξ)dξ. (28)

The objective is tominimizeJ. ‘‘Flash’’ represents thematerial that
is wasted during the forging process and ‘‘underfill’’ corresponds
to the volume of die that is not filled. It is to be noted that
the integral is taken over a probability space, defined by the
uncertain sources. β represents the controllable parameters which
are usually the initial shape parameters for the forging problem.
In the mathematical formalism, we allow for uncertainties in β .
However, this is only used in checking the convergence of the
stochastic direct and sensitivity problems, whilst in the robust
design problem these are taken to be deterministic. The objective
function can now be written as:

J(β) = α1

∫ (
1
N1

N1∑
i=1

3∑
j=1

(
xij(β(ξ), ξ)− x

d
j

)2)
p(ξ)dξ

+α2

∫ (
1
N2

N2∑
i=1

3∑
j=1

(
xij(β(ξ), ξ)− x

d
j

)2)
p(ξ)dξ (29)

where N1 represents the number of finite element nodes which
are yet to fill the die, and N2 represents the number of nodes
responsible for flash. xdj represents the desired value of the
coordinate which is given by the shape of the die. The objective
function can be written discretely as:

J =
α1

N1

N1∑
i=1

3∑
j=1

∫ ( Nc∑
k=1

xij(β(ξ
k), ξk)Lk(ξ)− xdj

)2 p(ξ)dξ
+
α2

N2

N2∑
i=1

3∑
j=1

∫ ( Nc∑
k=1

xij(β(ξ
k), ξk)Lk(ξ)− xdj

)2 p(ξ)dξ.
(30)

We assume that the primary design variables are the shape
parameters of the workpiece that is undergoing deformation.
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Fig. 19. Some statistics of the reconstructed concentrations (a) Comparison of the actualmean concentration and recomputedmean concentration at t = 0.1 (b) Comparison
of actual variance of concentrationwith the recomputed variance at t = 0.1 (c) Comparison of the actualmean concentration and recomputedmean concentration at t = 0.8
and (d) Comparison of actual variance of concentration with the recomputed variance at t = 0.8.
Fig. 20. The figure shows comparison of the concentration of the injected fluid at
t = 0.1 at the location (0.25 0.375) computed using the stochastic optimization
scheme. It also shows the PDF of measurement data at the same point.

These variables are designed, based on the diverse sources of
uncertainties present. Taking the sensitivity of the objective
function with respect to a particular realization of the shape
parameter, we have:

∂J

∂β(ξm)
=
2α1
N1

N1∑
i=1

3∑
j=1

∫
Iij(ξm)dξ

+
2α2
N2

N2∑
i=1

3∑
j=1

∫
Iij(ξm)dξ (31)

where Iij(ξm) =
(
xij(β(ξ

m), ξm)Lk(ξ)− xdj
) ∂xij(β(ξm),ξm)

∂β(ξm)
Lm(ξ)p(ξ).

It is to be noted that during the robust design procedure, we
assume β ’s are deterministic, since the contrary does not make
Fig. 21. The figure shows the shape of a rigid die to which the workpiece has to be
deformed.

physical sense. However, we assume they are uncertain only to
show comparison and convergence of stochastic sensitivities.

6.4.1. Problem convergence
A simple large-deformation problem with the objective of

forming the workpiece to the shape shown in Fig. 21 is chosen.
Details of the finite element implementation of such a process is
shown in [29]. It is to be noted that a PetSc implementation of
the same algorithm was performed, which resulted in significant
improvement in computational efficiency, and employed here. A
stochastic analysis is performed,with themain uncertainty coming
from the initial shape of the workpiece and the forging velocity.
The stochastic collocation technique is employed by repeatedly
solving the direct problem for computing the PDF of problem
solution. We first check the convergence and accuracy of the
stochastic direct problem by comparing with Monte-Carlo results.
The plots shown in Figs. 22 and 23 show that the solutions using
increasingly higher level of stochastic collocation gridsmatchwith
the Monte-Carlo solution.
Further, a comparison of the moments of stochastic shape sen-

sitivity
∂xij(β(ξ),ξ)

∂β1(ξ)
is shown in Fig. 24. The results show a good con-

vergence of the stochastic sensitivities as the level of interpolation
increases. Finally, the objective function is minimized for uniform
variability in the forging velocity of the process between 0.09mm/s
and 0.11 mm/s. The best design occurs for the shape parameter
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Fig. 22. The figure shows the convergence of the PDF of spatial location of a point
with initial location x0 = 0 at a time t = 10 s. The plot shows a convergence of the
PDF towards that estimated using Monte-Carlo simulation.

Fig. 23. The figure shows the convergence of the PDF of spatial location of a point
with initial location x0 = 0.5 at a time t = 10 s. The plot shows a convergence of
the PDF towards that estimated using Monte-Carlo simulation.

Fig. 24. The table shows a comparison of the stochastic sensitivity of spatial
location (occupying x0 = 0.5) with respect to a perturbation in the shape
parameter, β1 . Statistics of the stochastic sensitivities, computed using different
levels of the collocation technique, are compared against those obtainedusing Finite
Difference and Monte-Carlo scheme.
values of β = [1.00137; 0.995292; 1.01149; 1.04842]. The mean
and extremal solutions are plotted in Fig. 25. While the objective
is clearly satisfied for the mean forging velocity, it cannot be as-
sured for all samples, since the shape parameter is assumed to be
deterministic.

7. Discussion and future work

In this work, we have discussed a novel technique for solving
stochastic inverse and robust design problems which only require
deterministic solvers. With repeated calls to direct solvers, a full
PDF of the input variability can be captured. To test the technique,
we employed the SIHCP, and the results show that the developed
methodology works well. We went on to employ successfully the
technique on concentration reconstruction problems, as well as
robust design for large deformation problems. In addition, the
new technique has the ability to work well for large stochastic
dimensions also, which is not the case if we employ the GPCE
scheme. The generic framework that was developed in this paper
can be incorporated into any stochastic design/inverse problem
with a solver for computing direct and sensitivity sub-problems.
However, the most important limitation of this work is the

use of polynomials to construct the support space which drives
the stochastic optimization problem. It is because of this, that
we are not precisely able to capture the PDFs, though the effect
is not so prominent. For instance, in problems involving shocks
or bifurcations, polynomials may not be the most ideal way
to approximate the stochastic space, and we may need to use
schemes such as wavelets. The work that is showcased here
is exploratory in answering how stochastic measurements can
be captured using stochastic problem parameters. In this sense,
this can be considered as a problem of reverse uncertainty
propagation—howdoes the stochastic nature of themeasurements
affect the computed problem parameters? This is done in a precise
mathematical setting, using the stochastic collocation technique.
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