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Abstract

Computational fluid dynamic methods are currently being used clinically to simulate blood
flow and pressure and predict the functional significance of atherosclerotic lesions in patient-
specific models of the coronary arteries extracted from noninvasive coronary computed to-
mography angiography (cCTA) data. One such technology, FFRcr, or noninvasive fractional
flow reserve derived from CT data, has demonstrated high diagnostic accuracy as compared
to invasively measured fractional flow reserve (FFR) obtained with a pressure wire inserted
in the coronary arteries during diagnostic cardiac catheterization. However, uncertainties in
modeling as well as measurement results in differences between these predicted and measured
hemodynamic indices. Uncertainty in modeling can manifest in two forms - anatomic uncer-
tainty resulting in error of the reconstructed 3D model and physiologic uncertainty resulting
in errors in boundary conditions or blood viscosity. We present a data-driven framework for
modeling these uncertainties and study their impact on blood flow simulations. The incom-
pressible Navier-Stokes equations are used to model blood flow and an adaptive stochastic
collocation method is used to model uncertainty propagation in the Navier-Stokes equations.
We perform uncertainty quantification in two geometries, an idealized stenosis model and a
patient specific model. We show that uncertainty in minimum lumen diameter (MLD) has
the largest impact on hemodynamic simulations, followed by boundary resistance, viscosity
and lesion length. We show that near the diagnostic cutoff (FFRcr = 0.8), the uncertainty
due to the latter three variables are lower than measurement uncertainty, while the uncer-
tainty due to MLD is only slightly higher than measurement uncertainty. We also show
that uncertainties are not additive but only slightly higher than the highest single param-
eter uncertainty. The method presented here can be used to output interval estimates of
hemodynamic indices and visualize patient-specific maps of sensitivities.
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1. Introduction

Sufficient blood flow in the coronary arteries is essential for perfusing the myocardium
and ensuring normal cardiac function. Atherosclerosis in the coronary arteries can obstruct
blood flow and result in myocardial ischemia, or low myocardial blood flow particularly dur-
ing physical activity, and may necessitate treatment with medical therapy, angioplasty and
stenting or bypass surgery. The most effective test for assessing the functional significance of
coronary artery disease is invasive fractional flow reserve (FFR) which is the ratio of mean
pressure downstream of a coronary lesion to the pressure in the aorta under conditions of
maximal hyperemia induced through the administration of adenosine to dilate the coronary
microcirculation and increase coronary blood flow in a manner mimicking physical activity.
Importantly, large prospective randomized-control clinical trials have demonstrated that the
use of FFR in clinical decision-making can identify patients that should be treated medi-
cally [1] and those patients that benefit from revascularization using stents [2]. While FFR
is the gold-standard for identifying lesions causal of ischemia, it is an invasive method re-
quiring diagnostic cardiac catheterization and is negative in roughly half the patients that
receive the test [3, 4, 5]. As a result, there has been significant motivation to develop a
noninvasive test that could better identify patients who can be deferred from invasive diag-
nostic catheterization and those patients that would most likely benefit from this invasive
procedure. Recently, a technique called FFRcr has emerged for noninvasively predicting
FFR using coronary computed tomography angiography (coronary CTA) to inform simula-
tion studies of blood flow performed using computational fluid dynamics [6]. FFRcr has
demonstrated high diagnostic accuracy as compared to measured FFR [3, 4, 5] and has
been shown to significantly reduce unnecessary diagnostic cardiac catheterizations without
adverse clinical events [7], to improve the quality of life of patients receiving the test and
reduce health care costs [8].

Patient-specific models of blood flow in arteries include a description of the anatomic
region of interest created from image data, the mathematical equations representing the
physical laws of blood flow within the region of interest and boundary conditions to define
physiologic relationships between variables at the boundaries of the region of interest and
the remainder of the circulation. Each of these elements can introduce uncertainty in the
simulation and are discussed in turn in the following.

For modeling blood flow in the human coronary arteries, coronary CTA data provides
input for the patient-specific anatomic model. Image artifacts, which can depend on imaging
hardware, image acquisition protocols and reconstruction techniques and inherent patient
characteristics can affect the quality of the image data and the segmentation of the coronary
arteries. Owing to the reasons above, the reconstructed geometry from c¢CTA is an ap-
proximation of the true geometry (which is unknown), which has to be accounted for when
performing blood flow simulations.

For many patient-specific simulations of blood flow, a Newtonian rheological model is
used and a single viscosity value is assumed based on population averages. The effect of
variations in blood viscosity from the population-based average will depend on the quantity
of interest. For example, viscosity will have a direct effect on shear stress, but may or may
not affect computed pressure gradients or fractional flow reserve values.

Inlet and outlet boundary conditions have a profound effect on blood flow simulations
in patient-specific models. A robust strategy is to prescribe the flow rate or pressure at the



inlet and a lumped-parameter relationship between flow rate and pressure at the outlets of
the patient-specific domain. In this work, for simplicity, we use a resistance model relating
pressure to flow to model properties of the micro-circulation downstream of the large coronary
arteries represented in the image-based model [6]. Although resistance values in each artery
cannot be directly measured non-invasively, parameter values can be estimated based on
form-function relationships applied to an individual patient and population-based physiologic
responses. However, the true resistance remains unknown and it is necessary to account for
this uncertainty in patient-specific models.

The main goal of this work is to understand the impact of uncertainties in lumen geom-
etry (minimum lumen diameter and lesion length), boundary conditions and blood viscosity
on the blood flow and pressures in the coronary artery. We investigate the relative impor-
tance of each of these model parameters and calculate the impact of these on FFR¢r, in
comparison with measurement variability. Finally, we perform a combined uncertainty quan-
tification analysis where all variables are perturbed simultaneously to determine whether the
uncertainty in the parameters is additive.

To accomplish this assessment of solution uncertainty, we use data-driven techniques for
calculating the stochastic models. To account for uncertainty in geometry, we utilize data
comparing minimum dimensions of the lumen segment from coronary CTA against invasive
measurements obtained using optical coherence tomography (OCT). Uncertainty in lesion
length is modeled based on variability in modeling stenoses by three different users segment-
ing the same image data. For modeling uncertainty in resistance values, we selected a cohort
of patients whose reconstructed geometry matches invasive measurements obtained from in-
travasular ultrasound (IVUS) data. We then make the assumption that all of the differences
between actual and measured FFR occurs due to error in modeling boundary resistance.
This uncertainty model for boundary resistance is computed by fitting an empirical distri-
bution to the observed data. Uncertainty in viscosity is modeled by fitting a distribution to
viscosity calculated from measured values of hematocrit obtained in a recent clinical trial.

The differences between this work and prior work [22, 14] are (i) in the previous work, we
used a machine learning surrogate for FFRcr whereas we use the Navier-Stokes equations
directly in this manuscript, (ii) uncertainties in minimum lumen diameter, lesion length,
boundary resistance and viscosity are all included in this manuscript, whereas only geometric
uncertainty was discussed earlier, and (iii) the input uncertainty model for all the parameters
is computed using a data-driven approach.

The paper is organized as follows. In the methods section, we describe a data-driven
approach for stochastic modeling of the various sources of uncertainties. We also describe
the stochastic Navier-Stokes equations. In section 3, we describe the results obtained on an
idealized and patient-specific model, including the computed standard deviation, confidence
intervals and probability density functions. In section 4, we discuss implications of this work,
including ranking of parameters based on their importance.

2. Methods:

We first describe the geometry of the system under consideration. Subsequently, we
describe the Navier-Stokes equations governing blood flow and physiologic boundary condi-
tions. Then, we describe the stochastic models used in this work for each of the variables,



namely minimum lumen diameter (MLD), lesion length, blood viscosity and boundary re-
sistance. Then, we describe the adaptive stochastic collocation algorithm used to solve the
stochastic Navier-Stokes equations.

2.1. Modeling geometry:

2.1.1. Idealized stenosis model

First, we analyze FFRcr and flow through an idealized stenosis model. The geometry
consists of a constant diameter cylindrical vessel with a focal stenosis, described by

d(z) = dn(2) [1 - % {1 ~ cos <Z _A%Hwﬂ a} <<z (1)

where dj, is the healthy diameter of the vessel, z. is the location of the throat (z. = (2;+24)/2)
of the stenosis, z; and z, are the start and end locations of the stenosis, A is the half length
of the stenosis (A = (z; + 2.)/2) and « is the modeled % stenosis. For instance, a 60%
stenosis would yield a diameter of 0.4d;, at the throat of the stenosis. We chose dj to be 3.5
mm which is representative of a healthy coronary artery, z; to be 17.5 mm and z, to be 25
mim.

2.1.2. Patient-specific stenosis model:

We reconstruct a patient-specific model of the coronary arteries from coronary CTA
images. The ascending aorta is first extracted and the coronary ostia identified. Next,
the centerlines of the vessels of interest are extracted and the coronary lumen boundary is
segmented for each vessel. Finally, the outlet boundaries are defined by trimming the model
at pre-defined locations.

2.2. Navier-Stokes equations

Blood flow in the cardiovascular system is modeled herein using the Navier-Stokes equa-
tions given by
p(uy (x,t)+ (u-Viu(x,t)) = —Vp(x,t)+pViu(x,t)+f VxeQ
V -u(x,1t) 0, (2)

where f represents all body forces, p denotes density, i denotes dynamic viscosity, u denotes
velocity, p denotes pressure, and ) represents the patient-specific problem geometry. Finite
element simulations have emerged as a powerful and robust tool to solve these equations
in complex patient-specific geometries [9, 10, 11]. In the simulations performed here, the
vessel walls are assumed to be rigid, and a Newtonian constitutive behavior of the fluid is
assumed, with viscosity of blood of 0.04g/cm.s. and density of 1.06g/ cm®. For the idealized
stenosis model a constant pressure boundary condition is applied at the inlet whereas for
the patient-specific model, a parabolic velocity profile is prescribed at the aortic inlet based
on a target cardiac output. The outlets are modeled using a resistance condition which
couples blood pressure and flow rate at the outlet [10, 12, 13]. Fractional flow reserve is
calculated as FFRor(x) = };C(x) based on steady flow simulations where Pjyorta is the mean

aorta

aortic pressure and P,(x) is the mean pressure in the coronary artery [6].




2.8. Modeling uncertainties

2.8.1. Uncertainty in minimum lumen diameter (MLD)

Idealized stenosis model: For the idealized stenosis model, the uncertainty is modeled as
originating from image resolution and/or image artifacts. Since state-of-the-art algorithms
can represent the model with sub-voxel accuracy, we use an error of 0.3 mm in the radius,
resulting in 0.6 mm error in minimum lumen diameter. We assume that the entire stenosis
model uniformly dilates or erodes spatially, implying that the lumen diameter in the entire
vessel reaches their minima and maxima simultaneously. While this results in sampling
extreme configurations with much higher probability, our goal is to show that even such
rigorous uncertainty modeling results in rather modest uncertainty in the clinical outcome,
especially near the clinical cutoff of 0.8. For the idealized problem, the stenosis diameter
given in Eq. 3 is now given by

d(z,€) == dp(2) {1 - % {1 — cos (z _AZ%MH (a+ dh‘zz)ﬂ a<z<z (3

where § is a uniform random variable with the range +0.3 mm and the uncertainty is assumed
to be independent of the degree of stenosis, a. In other words, the uncertainty is modeled
directly on the vessel size. Perturbation on the surface mesh is achieved using the method
described in Sankaran et. al. [14].

Patient specific model: We model uncertainty in the MLD using data comparing the
lumen segmentation extracted from coronary CTA against that obtained from an optical
coherence tomography (OCT) technique as the reference standard. Specifically, image pro-
cessing methods were applied to segment lumen boundaries of 97 lesions in 23 patients [15].
OCT data was co-registered with CT data, and the errors in MLLD and ML A were quantified.
The mean and standard deviation in error between segmented and ground-truth data was
computed and a Gaussian distribution was used to model uncertainty in MLD.

2.8.2. Uncertainty in boundary resistance

Since it is not possible to measure resistance of the micro-vasculature including the effect
of adenosine, we use the measured FFR on a set of patients to infer error in boundary
resistance. First, we pick a set of 28 patients where the reconstructed geometry matched
invasive imaging data using intra-vascular ultrasound. Second, we calculate the resistance
under hyperemia conditions that would result in a match of FFR¢T to the measured FFR.
Finally, we postulate that the difference between our assigned resistance [6] and the resistance
calculated for FFRoT to match measured FFR is representative of uncertainty in resistance,
since these patients have low uncertainty in geometry. A log-normal probability distribution
function, with the lower and upper 95% confidence bounds being 65% and 130% of the mean
resistance, was found to fit the observed differences as shown in Figure 1. This was achieved
by finding optimal parameters of the log-normal distribution that minimizes error entropy
using Nelder-Mead algorithm. Therefore, this model is used to account for uncertainty in
boundary resistance.

2.8.3. Uncertainty in blood viscosity
Hematocrit is modeled as a Gaussian random variable, based on values measured in a
recent clinical trial [3]. A mean value of 45 and a standard deviation of 8 was observed, and
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Figure 1: Histogram of the ratio of boundary resistances, where Ry atcheq 1S the resistance chosen such that
FFRcT matched measured FFR and R,ctua) is the resistance chosen using the method described in Taylor
et. al. [6]. This histogram was only calculated for a set of patients whose reconstructed lumen diameter had a
small error with respect to invasive intravascular ultrasound measurements. This histogram was hypothesized
to represent the error in the modeled boundary conditions. Both a log-normal and Gaussian distribution
were fit to the data, and the log-normal distribution was finally chosen since it fit the distribution better and
had a lower error entropy.

hence a Gaussian distribution with these parameters was used. However, the uncertainty in
viscosity (p) varies non-linearly with uncertainty in hematocrit(hct) since they are related as

Hp
= et /10075 W

where p,, the viscosity of plasma is 0.0011 Pa.s.

2.3.4. Uncertainty in lesion length

Uncertainty in lesion length occurs due to difficulties in interpreting the extent of coronary
lesions from coronary CTA data. The degree of uncertainty was generally found, based on an
inter-user variability study, to be 1 mm, which is modeled as a uniform random variable.
We show later that lesion length has the least impact on uncertainty in hemodynamics, and
hence the results are not very sensitive to the model chosen.

2.4. Stochastic Navier-Stokes equations

In the stochastic version of the Navier-Stokes equations, blood velocities and blood pres-
sures are assumed to be varying with space, time as well as a stochastic space. This is
formally written as u = u(x,t,€) and p = p(x,t,£). Hence, the stochastic Navier-stokes
equations are given by



p(uy (x,1,8) + (- Vyu(x,t,€) = —Vp(x,t,€) + p€)Vu(x,t,€) +f vx e Q*(§)
V-u(x,t,&) = 0, (5)

These equations are solved using the adaptive stochastic collocation method [16, 18, 17].
We first compute the quadrature points where simulations will be performed, by sampling
and interpolating the stochastic space using the adaptive Smolyak quadrature algorithm [17,
16, 18, 19, 20, 21]. The 3D Navier-Stokes equations are solved at each quadrature point to
calculate FFRer [22]. Finally, we can evaluate probability distribution function of FFRcT
and confidence intervals in FFRer from p(x, ¢, ).

We first perturb each of the four variables separately, fixing the others at their mean
value. Then, we perform a combined uncertainty quantification analysis, whereby all the
four variables are perturbed simultaneously. A four dimensional stochastic space is defined
for this purpose and blood velocities and pressures at each point in space is associated with
a stochastic space representation. The sensitivities (standard deviation) in FFRcr due to
the four variables are compared and ranked. Confidence intervals are also extracted. The
individual sensitivities are finally compared with the sensitivities of the combined UQ model.

3. Results:

We describe the impact of uncertainty in MLD, lesion length, boundary resistance and
viscosity on an idealized stenosis model first. Following this, we describe the results on a
patient-specific model, which has a focal lesion in each of the main coronary vessels (left cir-
cumflex - LCx, left anterior descending - LAD and right coronary artery - RCA). Uncertainty
in pressure, velocity and FFRqgT are quantified.

3.1. Idealized stenosis model

A plot of FFRer for different % stenoses is shown in Fig. 2. Standard deviation (both
+) due to each of the variables are color coded, with MLD generally exhibiting the highest
sensitivity on stenoses greater then 50%. The result of four-dimensional uncertainty quan-
tification analysis is shown in black, and is barely visible since it is only marginally higher
than the sensitivity due to MLD.

Blood pressure and velocity magnitudes along a cross-section of the idealized stenosis
model are shown for six levels of disease (30% to 80% in increments of 10%) in Fig. 3. The
distal pressures as well as flow-rate for each of these levels of disease are also shown. The
change in pressure drop and flow-rate between, say 40% and 60% stenosis is significantly
lower than between 60% and 80% stenosis. This is, in general, true for any two successive
pairs of disease severity. The flow-rate in the idealized model at 80% stenosis is one-third of
the flow-rate at 40% stenosis.

Blood pressure and velocity at extrema quadrature points (corresponding to & = 0 and
& = 1, the minima and maxima) on an idealized model with 60% stenosis are shown in Fig. 4.
The corresponding flow-rates are also listed. The largest difference in pressure drop (and
hence difference in FFR ) across the stochastic space due to MLD, lesion length, boundary
resistance and hematocrit were calculated to be 29 mm Hg, 6 mm Hg, 9 mm Hg and 4 mm
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Figure 2: Fractional flow reserve calculated from CT (FFRc) for different % stenoses in an idealized arterial
model. The sensitivities of FFRcT to variability in the four parameters are plotted, demonstrating that the
minimum lumen diameter (MLD) has the highest impact, followed by boundary resistance, blood visocity and
lesion length. Further, a combined uncertainty quantification analysis results in almost a similar variability
as the highest sensitive variable (MLD).

Hg respectively. The corresponding difference in flow rates were 1.3 cc/s, 0.2 cc/s, 0.9 cc/s
and 0.2 cc/s. Hence, the relative importance of the four variables, quantified by their impact
either on the pressure drop, FFRcr or flow-rate were (in decreasing order of importance)
MLD, boundary resistance, hematocrit and lesion length.

3.2. Patient-specific model

Here, we show the relative impact of minimum lumen diameter, lesion length, boundary
resistance and blood viscosity on a patient specific model. Figure 5 shows the standard
deviation and confidence intervals in FFRcr resulting from uncertainties in MLD, lesion
length, boundary resistance and viscosity respectively. The values are reported at the distal
ends of each of the vessels (LAD, LCx and RCA). The figure shows that MLD has the highest
impact in the LAD and LCx followed by boundary resistance, blood viscosity and lesion
length. This trend was not observed in the RCA, though the magnitude of uncertainty in
FFR T was generally small (less than 0.03). Further, the green lines represent reproducibility
of measured FFR [23], and only uncertainty in MLD is slightly higher than measurement
uncertainty.

Mean FFRcT on the patient specific model is shown in Fig. 6. The mean value of FFR¢
in the distal ends of each of the territories, along with the confidence intervals, is also shown.
Probability distribution functions of FFRcT at the distal ends of LAD, LCx and RCA are
shown in Fig. 6. These are obtained by sampling the stochastic space representation of
FFRcr corresponding to the different variables. These distributions, again, highlight the
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Figure 3: Pressure and velocity plots at six different levels of disease corresponding to 30%,40%,50%,60%,70%
and 80% stenosis.

importance of modeling uncertainty in MLD, and demonstrates that on average the range of
FFRcr near the diagnostic cutoff of 0.8 is within the bounds of reproducibility of measured
FFR.

Patient-specific FFRcT maps, at the extrema stochastic collocation points (corresponding
to & = 0 and € = 1), due to uncertainty in MLD in the LAD, LCx and RCA are shown
in Figure 7. The locations of the MLD are also marked. Similarly, patient-specific FFRcr
maps corresponding to lesion length are shown in Figure 8.

4. Discussion

We applied an adaptive stochastic collocation method for analyzing the impact of uncer-
tainty in minimum lumen diameter, lesion length, boundary resistance and blood viscosity
on blood flow simulations. We showed these results on both an idealized stenosis model and
a patient-specific geometry with lumen narrowing on each of the major coronary arteries
(LAD, LCx and RCA).

We observed that the relative importance of uncertainty in minimum lumen diameter
exceeds that of the other variables considered (lesion length, viscosity and boundary resis-
tance). These were true in both the idealized stenosis model as well as the patient-specific
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Figure 4: Simulation results for (left) pressure and (right) velocity corresponding to four different variables
(from top) minimum lumen diameter(MLD), lesion length, boundary resistance, and hematocrit, shown at
the extrema quadrature points in the stochastic space (minimum and maximum). The distal pressures as
well as net flow rates are also listed, showing that the minimum lumen diameter has the most impact on
simulation results.

geometry. For the RCA, the magnitude of uncertainty due to MLD was similar to the other
factors, since the MLD in the deterministic model was not low enough (FFRcT was greater
than 0.8), and other factors such as boundary resistance were equally important. These
are consistent with what we might expect from analytical models. The Poiseulle equation
predicts pressure loss between two locations, a and b in a vessel as

b
P, — P, = / BuQdr (6)

mr(z)*

where 7, and r, are the vessel radii at locations a and b, P, and P, are the corresponding
blood pressures, @ is the flow-rate through the vessel and u is the viscosity. Bernoulli’s
equation predicts pressure loss as

1

Pa—Pb:§p v —v?) (7)
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Figure 5: Comparison of standard deviation and outliers due to uncertainty in MLD, lesion length, boundary
resistance and viscosity for each of the three lesions . The figure demonstrates that uncertainty in MLD
generally dominates and that uncertainties in the rest of the variables are usually within reproducibility of
measurements (dotted green lines representing a variation of 0.03 in measurement FFR [23]). The asymmetry
in uncertainty due to minimum lumen diameter is because of the non-linear pressure drop due to changes in
radii. The combined uncertainty including all four variables for LAD, LCx and RCA were 0.037, 0.023 and
0.024 respectively, which is significantly lower than their additive sums.

which can be re-written as

Q2
Po =Py = 55p(1/ry = 1/r3). (8)

where v, and v, are the blood velocities at @ and b. Neglecting the pressure recovery between
the throat of the stenosis, ¢ and the location b, the pressure loss can be written as
Q? 4

Pa—Pb%Pa—PC%ﬁp(l/rc) (9)
Hence, both Poiseuille’s and Bernoulli’s model predict that pressure loss varies with the
inverse of the fourth power of MLD. However, Poiseulle’s equation is linear with respect
to flow rate, lesion length and blood viscosity while Bernoulli’s equation is quadratic with
respect to flow rate but does not depend on lesion length or viscosity.

The magnitudes of predicted uncertainty are significantly less than what one might obtain
from analytical equations such as Poiseuille or Bernoulli’s equation, see e.g. those predicted
in [24]. The reasons are two-fold. First, it is unrealistic to assume that uncertainty in
minimum lumen diameter is correlated across the entire geometry, which implies a much
larger error in geometry obtained from CT scans than those reported in literature. Second,
there is some self-regulation when considering uncertainty in MLD. A smaller MLD results
in higher resistance to flow but also reduces the flow through that segment of the vessel.
Hence the net pressure drop is lower than what one might expect assuming flow rate is the
same.

Velocity contours with hematocrit changes look different compared to the other variable
studies, in spite of the flow-rate and pressure drop being within the range of the other
variable studies. This is due to the difference in internal shear between fluid layers resulting
in a different velocity profile for the same flow rate. The difference can also be explained
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length has the smallest magnitude of uncertainty in FFRctT whereas MLD has the highest. The effect of
uncertainty in boundary resistance is slightly higher than that due to uncertainty in blood viscosity.

using Reynolds number (Re). For the same velocity and characteristic diameter, Re & 1/p,
and hence a patient in the lower limit of hematocrit can have twice the Reynolds number
as a patient in the upper limit, which leads to the turbulent features and flow instabilities
observed downstream of the stenosis.

Comparison of the standard deviation in FFR¢cr resulting from uncertainty in the four
variables with reproducibility of measured FFR revealed that only variability in MLD is of
a similar magnitude in patient-specific models. This could be due to the factors described
in the previous paragraph, but in addition, it is prudent to note that higher magnitudes of
uncertainties may occur with more diseased vessels (e.g. 70 or 80% stenosis). However, they
do not impact clinical diagnosis since FFR for these patients are generally much less than
0.8. Hence, we picked a patient specific example where the FFRcr was near the 0.8 cutoff.

We also observed that uncertainty is not additive. In fact, analysis of the combined
uncertainty of the four variables was only slightly higher than the highest uncertainty due
to each variable individually. This is because the four variables are independent, and the
probability of all four variables simultaneously being at their extrema is very low. Hence,
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Figure 7: Uncertainty in MLD at the extrema of the stochastic space (smallest and largest sampled diameter)
in (from left) LAD, LCx and RCA. The biggest difference is in the LAD where the FFRcT changes from
around 0.6 (diseased) to more than 0.8 (healthy). However, since these are extrema in the stochastic space,
the actual standard deviation and confidence intervals in FFRcr are significantly lower (as shown in the
table).

when considering multiple variables, it is important to perform a multi-parameter stochas-
tic study as opposed to combining the results of multiple single-parameter studies. In this
context, the adaptive sparse grid collocation was found to be very useful in identifying opti-
mal quadrature points in the stochastic space. We performed between 5 and 13 simulations
for single parameter uncertainty quantification and between 17 and 25 simulations for the
combined uncertainty quantification.

In quantifying the impact of uncertainty on simulations, it is important to identify and
accurately model the underlying source of uncertainty. Uncertainty in minimum lumen di-
ameter and lesion lengths were modeled by computing an error histogram between these
values on the reconstructed geometry compared to a ground truth. Ground truth data was
obtained by using invasive methods such as intravascular ultrasound or optical coherence
tomography technique. However, we did not consider systolic and diastolic differences in
modeling uncertainty in radius. The uncertainty model depends on the particular algorithm
used to compute lumen segmentation from cCTA images. Similarly, uncertainty in viscosity
was modeled by collecting inter-subject data. Uncertainty in boundary conditions was a bit
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Figure 8: Uncertainty in lesion length corresponding to lengths of (top) 2 mm and (bottom) 0 mm in (left)
LAD, LCx and RCA. The impact of lesion length on FFRc is minimal.

challenging, since they are not measurable directly. In this work, we assumed that ground
truth boundary conditions are those that match measured pressure data within the coro-
nary arteries, on cases with accurate geometry (validated against intra-vascular ultrasound).
However, our work assumed that the patients do not have microvascular dysfunction, in
which case the magnitude of uncertainty in resistance could be higher. Also, with more
data, the use of a localized image quality metric to define input uncertainties would result
in a more accurate assessment of geometric uncertainty.

The framework outlined herein may be useful in calculating the uncertainty in geom-
etry, boundary conditions as well as other parameters such as viscosity in patient-specific
models. This would help in reporting standard deviation and confidence intervals, and ulti-
mately interval estimates instead of point estimates. Further, this data may help physicians
understand the impact of modeling uncertainty when diagnosing functional significance of
coronary artery disease in patients with equivocal diagnostic tests.
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