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Patient-specific blood flow modeling combining imaging data (such as CT scans) and computational fluid dynamics can aid in the
assessment of functional significance of coronary artery disease. Accurate coronary segmentation and realistic physiologic modeling
of boundary conditions are important steps to ensure a high diagnostic performance. Segmentation of the coronary arteries can be
constructed by a combination of automated algorithms with human review and editing. However, blood pressure and flow are not
impacted equally by different local sections of the coronary artery tree. Focusing human review and editing towards regions that will
most affect the subsequent simulations can significantly accelerate the review process. We define geometric sensitivity as the standard
deviation in hemodynamics-derived metrics due to uncertainty in lumen segmentation. We develop a machine learning framework
for estimating the geometric sensitivity in real time. Features used in the machine learning algorithm are split into geometric,
clinical, and reduced-order models. We develop an anisotropic kernel regression method for assessment of lumen narrowing score,
which is used as a feature in the machine learning algorithm. A multi-resolution sensitivity algorithm is introduced to hierarchically
refine regions of high sensitivity so that we can quantify sensitivities to a desired spatial resolution. We show that the mean absolute
error of the machine learning algorithm compared to 3D simulations is less than 0.01. We further demonstrate that sensitivity is not
predicted simply by anatomic reduction but also encodes information about hemodynamics which in turn depends on downstream
boundary conditions. We then calculate the dependence of allowable coefficient of variation in lumen area to maximum allowable
sensitivity. This sensitivity approach can be extended to other systems such as cerebral flow, electro-mechanical simulations, etc.

Index Terms—sensitivity analysis; multi-resolution analysis; blood flow simulations; machine learning; segmentation accuracy.

I. INTRODUCTION

1

ISCHEMIA caused by obstructive coronary artery disease
(CAD) is a serious ailment that can lead to severe adverse

events including myocardial infarction and death if left un-
treated. Percutaneous coronary intervention (PCI) using stents
and bypass grafting are popular treatment options for patients
diagnosed with CAD. In the former, a catheter is inserted in
the lumen of a lesion which is suspected to cause ischemia,
and a balloon is inflated to restore the lumen to its healthy
diameter. A stent is typically placed during angioplasty to
ensure the artery remains permanently open. Another option
is to perform a coronary artery bypass graft (CABG) surgery,
where the diseased or occluded regions are bypassed using
either native artery (such as Internal Mammary artery) or vein
graft (e.g. Saphenous vein).

The FAME study [1] demonstrated that the use of fractional
flow reserve (FFR) to decide which lesions need to be stented
has a superior performance compared to stenting all vessels
with anatomical narrowing. Fractional flow reserve is defined
as the ratio of blood flow rate under maximum hyperemia
(reduced microvascular resistance achieved by injecting adeno-
sine) to the blood flow under the hypothetical condition that
the coronary artery was healthy [2]. Assuming that flow-rate is
linearly related to pressure drop, the FFR can be approximated
by the ratio of blood pressure distal to a lesion to the blood
pressure proximal to the lesion. Current noninvasive tests for

1Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

CAD either provide data on anatomic narrowing (e.g. via
coronary computed tomography angiography (cCTA)) or data
on myocardial perfusion deficits (e.g. single photon emission
computed tomography (SPECT)), but cannot identify whether
specific coronary lesions are functionally significant. It has
been demonstrated recently that the FFR can be computed
non-invasively from CT-scans (called FFRCT) using blood flow
simulations performed on reconstructed coronary lumen seg-
mentation [2]. Three clinical trials have demonstrated the high
accuracy that can be achieved using blood flow simulations
compared to the invasive gold standard, measured FFR [3],
[4], [5].

Uncertainty in blood flow simulations can be caused by
different sources such as artifacts/noise in cCTA, uncertainty in
the enforced boundary conditions or uncertainty in the system
properties such as blood viscosity. Previous studies suggest
that the impact of inaccuracies in lumen segmentation can
significantly impact blood flow simulations [6], [7]. Accurate
lumen segmentation continues to remain a challenge due to
complexity and artifacts related to obtaining cCTA [8], [9].
Evidence from Voros et. al. [10] suggests that a calcium
blooming artifact can increase the minimum lumen diameter
by ∼ 40% and can increase overall luminal diameter by ∼
20%, which in turn affects clinical diagnosis. Hence, there
is a need to understand how uncertainty in the reconstructed
lumen segmentation affects FFRCT, and subsequently identify
which regions have the maximum impact on predicted values.

Accounting for uncertainty in partial differential equations
has been the subject of many studies [11], [12], [13]. The
link between domain geometry and solution to the Navier-
Stokes equations cannot be quantified analytically since the
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geometry influences the solution indirectly by changing the
domain of the computational mesh over which momentum and
mass conservation laws are imposed. Hence, this link needs to
be studied computationally which has been the subject of study
of some previous works [14], [7], [15]. Analysis of variability
in minimum lumen diameter in an idealized model revealed
that uncertainty quantification may be important in bypass
graft design [16]. Cebral et. al. [15] found that geometry has
the most impact on flow structures in cerebral aneurysms;
however, the geometric sensitivity analysis was restricted
to how three modelers constructed the anatomical models
(lumen segmentation) and did not quantify sensitivity based
on a continuum representation of a family of reconstructed
geometries. Further, the extensive branching structure and flow
competition between different coronary arteries that is present
in the coronary circulation was not a feature of the aneurysm
models considered. Yet, this was an important first study to
quantify the impact of different variables on the flow fields.

Considerable effort can be saved by focusing lumen seg-
mentation time on regions of the coronary arteries that max-
imally impact FFRCT results. In blood flow simulations in
coronary arteries, only a fraction of the coronary tree has
significant impact on the prediction of simulation outcome
and diagnosis. Statistical sampling methods such as Monte-
Carlo have slow convergence rates that scale with the problem
size. While stochastic collocation methods have demonstrated
much better convergence rates [7], computation of geometric
sensitivity information with patient-specific models may still
take multiple days.

We accelerate computation of sensitivities using a machine
learning approach. The stochastic collocation algorithm [7],
[17], [18] is implicitly learned by the machine learning al-
gorithm. Towards this, we pick a set of features comprising
geometry, clinical variables, and analytical models, such as
analytical solutions for pipe flow parameterized by vessel radii
and length, flow rate, and blood viscosity. Initially, we define
all centerline points between two bifurcations, a bifurcation
and an outlet, or a bifurcation and an ostium, as a section.
Uncertainty of the entire section is controlled by a single
random variable (the entire section dilates or erodes in unison
as we sample the stochastic space). To remove dependence
of the sensitivity field on bifurcation location and to obtain
better spatial resolution, we developed an adaptive multi-
resolution algorithm that refines stochastic space in regions of
high sensitivity. This refinement is performed by identifying
sections whose sensitivity value exceeds a threshold, and sub-
sequently splitting the section into two subsections where each
subsection is controlled by an independent random variable.

The novelties in this work are
• Development and application of a multi-resolution sen-

sitivity algorithm to resolve regions of high sensitivity
without incurring a significant overall computational cost.
This is particularly useful in the right coronary artery
which tends to have fewer bifurcations, and hence long
section lengths.

• Computational framework that can use a different proba-
bility model for different portions of the lumen segmen-
tation

• Demonstration that sensitivity information encodes richer
information than just anatomic narrowing. Towards this,
we show the improvement in performance obtained from
using just geometry based features to using clinical and
reduced-order model features.

• Quantifying the link between allowable geometric sensi-
tivity and the range of allowable coefficient of variation
in lumen area.

The results show that real-time estimation of sensitivity can
be achieved with good accuracy compared to the stochas-
tic collocation method. This also helps us understand the
allowable error in lumen segmentation for a given bound
on the error in FFRCT. The method in this paper is also
applicable to measure the impact of segmentation accuracy
in other applications such as the MICCAI coarctation CFD
challenge [8], electro-mechanical simulations [19], and others.

II. METHODS

In this section, we describe the setup of the equations
governing blood pressure and velocity, as well as those
governing sensitivities of blood pressure and velocity to
geometry. Subsequently, we provide details on calculating
geometric sensitivities based on stochastic pressures calculated
by solving the stochastic Navier-Stokes equations. Then, we
describe the setup of a machine learning framework based on
evaluation of three class of features - geometry-based, clinical
and reduced order model. Then, we describe an algorithm
for multi-resolution sensitivity analysis. Finally, we describe a
method to compute bounds in lumen segmentation for a given
allowable error in FFRCT.

A. Governing Equations for blood flow simulations:

Blood flow in the cardiovascular system can be modeled
using the Navier-Stokes equations which are given by:

ρ (v,t (x, t) + (v · ∇)v(x, t)) = −∇p(x, t) + µ∇2v(x, t)

+f ∀x ∈ Ω

∇ · v(x, t) = 0, (1)

where f denotes all body forces, ρ denotes density, µ denotes
the blood viscosity, v denotes velocity, p denotes pressure,
and Ω denotes the patient-specific problem geometry. Finite
element simulations have emerged as a powerful and robust
tool to solve these equations in complex patient-specific ge-
ometries [20], [21], [22]. Figure. 1 shows the important steps
in calculating FFRCT from a CT-scan. First, the coronaries of
interest are isolated and reconstructed along with a portion
of the ascending aorta. An anisotropic finite element mesh
with boundary layer elements is constructed using a commer-
cially available package, MeshSim (Simmetrix, Inc., Clifton
Park, NY, U.S.A.). Boundary conditions are chosen based on
cardiac output, aortic pressure and flow demand of the myo-
cardium [2]. These are further modified to mimic hyperemic
conditions under administration of adenosine [2]. Finally, the
resulting non-linear equations are solved using a stabilized
finite element including a Newton-Raphson method based on
repeated calls to a linear solver [21].
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Fig. 1. An overview of the process of calculating FFRCT from cCTA images.
The coronary arteries of interest as well as a portion of the aorta are segmented
using standard algorithms [23], [25]. The Navier-Stokes equations are solved
to calculate FFRCT, which has been shown to have high accuracy in prediction
of measured FFR [5].

B. Stochastic modeling:

Calculating sensitivity involves (a) splitting the coronary
artery tree into sections and (b) sampling over a set of
probable segmentations of the coronary tree. The first step
is the extraction of a centerline tree. Centerlines are lines
that pass through the interior of the lumen, which are semi-
automatically extracted first. Identification of bifurcation and
ostium locations is a part of the centerline tree extraction
step. An ostium is a location where the coronary arteries
intersect the aorta. Various methods for extracting centerlines
are described in Schaap et.al. [23]. These are used as an aid
in performing lumen segmentation from which the patient-
specific vascular geometry is derived [9]. Centerlines are
discretized into distinct points with a spacing of 0.3 mm. The
methods described in the rest of the article do not depend on
the specific method used for either extraction of the centerline
tree or the lumen segmentation.

Parameterizing geometry: Uncertainty in lumen segmen-
tation is modeled by first breaking down the coronary tree
model into sections, where each section corresponds to lumen
segments between two bifurcations, a bifurcation and an outlet,
or ostium and a bifurcation. Each section is associated with
an independent random variable.

The number of stochastic variables scales with the number
of bifurcations and number of outlets, which in turn depends
on the size of the coronary tree. A multi-resolution algorithm
is described later using which the final sensitivity map does
not depend on the bifurcation location.

A random variable is denoted by the symbol ξ. Random
variable corresponding to a section j is denoted by ξj .
Stochastic space of an entire patient specific model is denoted

by a vector of random variables

ξ =
[
ξ1, ξ2, · · · , ξM

]
where each ξj can have any standard or (if available) region
specific probability distribution function, and M is the number
of sections in the model. A specific realization in the stochastic
space is denoted by ξi where i denotes a collocation point.
The stochastic collocation points corresponding to a section j
are represented by ξji .

The stochastic dimension is discretized using Lagrange
polynomials, where velocities and pressures are denoted
by v(x, t, ξ) =

∑N
i=1 v(x, t, ξi)Li(ξ) and p(x, t, ξ) =∑N

i=1 p(x, t, ξi)Li(ξ) respectively where ξi denotes the ith

collocation point, x denotes space dimension, N is the number
of collocation points, and t denotes the time dimension. The
collocation points ξi are identified by the adaptive stochastic
collocation algorithm [7] where each collocation point corre-
sponds to a distinct geometry.

Although one might be tempted to assign a uniform pertur-
bation for geometric perturbation, such a strategy would not
satisfy C0 continuity. To ensure C0 continuity, we adopt a
Gaussian perturbation model, which is defined as

u(c, co, l, ξ) = u0(ξ)
1√
2πl

e−
d(c,co)

2l2 , (2)

where u0(ξ) is the magnitude of uncertainty, co is the center of
the section, d(., .) is the Euclidean distance and the correlation
length, l, is set to be 1/6th the length of the section so that the
section ends are at a distance 3l from center. This ensures
negligible perturbation at the section ends, hence ensuring
continuity of the finite element mesh at the interface between
two neighboring sections. However, when the blood flow
simulations are replaced using a machine learning approach,
we can use uniform perturbations.

We can also extend the definition above to define
perturbations of a point in the arterial wall. These perturbations
will be defined as a perturbation (∆a) in the co-ordinate of
a surface point a, defined as

∆a(c, co, l, ξ) = u(c, co, l, ξ)
(a− c)

‖ a− c ‖
, (3)

where c is the projection of a onto the centerline.

C. Governing equations for sensitivity analysis:

Since the true patient-specific geometry is unknown (due
to resolution, noise in image acquisition, imaging artifacts,
etc.), the goal is to solve the Navier-Stokes equations in a
family of geometries, Ω∗, such that the true geometry lies
within this family. Each geometry in Ω∗ is associated with
a probability, and we are interested in ensemble properties of
blood pressure, and subsequently FFRCT, within Ω∗. Using the
stochastic space representation from the previous section, the
corresponding stochastic Navier-Stokes equations are given by
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ρ (v,t (x, t, ξ) + (v · ∇)v(x, t, ξ)) = −∇p(x, t, ξ) +

µ∇2v(x, t, ξ) +

f ∀x ∈ Ω∗(ξ)

∇ · v(x, t, ξ) = 0. (4)

By using the stochastic collocation method, exact solution
of Eq. 4 is imposed at the collocation points. Since
FFRCT(x, ξ) = p(x,ξ)

paorta
, we can define a FFRCT map for each

collocation point i and section j. We denote the FFRCT
obtained in the geometry corresponding to ith collocation
point at a section j as FFRCT(x, ξji ), which is defined as

FFRCT(x, ξji ) =
p(x, ξji )

paorta
(5)

Geometric sensitivity is defined as the maximum standard
deviation in FFRCT, σ∗FFRCT

, due to uncertainty in the
segmentation. This value quantifies the maximum impact
of changing the cross sectional area of a given section
on FFRCT. The stochastic space representation of blood
pressure is post-processed to evaluate standard deviation in
FFRCT, σFFRCT across the coronary model. The geometric
sensitivity associated with the section j is, therefore, defined as

σ∗,jFFRCT
= max

x
σjFFRCT

(x) (6)

where the standard deviation of FFRCT across the patient-
specific geometry, σjFFRCT(x) is calculated as

σjFFRCT
(x) =

√∫ (
FFRCT(x, ξj)− FFRCT(x)

)2
pdf(ξj)dξj

which can be discretized as

σjFFRCT
(x) =

√√√√ N∑
i=1

(
FFRCT(x, ξji )− FFRCT(x)

)2
bji .

where bji =
∫
Li(ξj)pdf(ξj)dξj, FFRCT(x) is the average

FFRCT at a given location x, and pdf(ξj) is the probability
density of ξj . The limits of the integration depend on the
sample space of pdf (e.g. Gaussian is unbounded, whereas
uniform distribution is bounded). Hence, a different probability
model can be used, if available, for different sections of the
patient-specific model.

Uncertainty analysis on a section of a patient-specific model
is illustrated in Fig. 2. The two simulations shown correspond
to two collocation points, and sensitivities (not shown) can be
obtained by aggregating the FFRCT map obtained for various
geometries calculated using the stochastic collocation algo-
rithm, calculating a variance map of FFRCT and calculating
the maximum standard deviation for each random variable (or
section).

D. Description of features for Machine Learning:

The stochastic collocation method shows significant im-
provement over Monte-Carlo methods. However, the compu-
tational time is still of the order of a few days, and hence not

a

b

c

Fig. 2. Impact of error in lumen segmentation in a section on FFRCT is
shown for a patient-specific coronary tree geometry. (a) shows FFRCT on the
full coronary tree, (b) shows FFRCT in a zoomed in region near a lesion of
interest, and (c) shows the impact of a few voxel variations due to uncertainty
in the section containing the lesion. The geometries (b) and (c) correspond
to two collocation points, ξ = 0.5 and ξ = 0 corresponding to the random
variable that describes the section containing the lesion. Based on a clinical
cutoff of diagnosing disease if FFRCT < 0.8, there are sections of the
coronary tree where diagnosis flips due to a few voxel uncertainty in the
lumen segmentation.

feasible to use in clinical practice. The most time-intensive
step in the stochastic collocation method is performing blood
flow simulations at the quadrature points. Hence, we use a
surrogate model [24] to predict FFRCT. The surrogate model
uses a machine learning approach similar to the one used here
but is trained on FFRCT instead of sensitivities. All the features
used for calculating sensitivities, with the exception of section
length and coefficient of variation in lumen area, are used for
the surrogate model. A bootstrap aggregated decision tree is
used for mapping the features to FFRCT.

We first extract salient features from each patient-specific
model (refer Fig. 3).Variables which are hypothesized to be
relevant to the hemodynamics are included as features for
machine learning. These are broadly classified as (a) geometric
features, (b) clinical features and (c) reduced order models. We
describe each of these below:

1) Geometric features:
Reconstructed lumen segmentation is an important variable

which determines accuracy of blood flow simulations [15], [6].
We use a data-driven approach, by first discretizing the geome-
try into points along the centerline of the lumen segmentation,
and subsequently representing the lumen segmentation using
a vector of geometric descriptors at each centerline point.

Each centerline point in the coronary tree is defined by
three classes of properties, namely (a) local, (b) upstream
and (c) downstream. Local lumen area is the only local
feature used. Upstream properties include volume of blood
upstream, distance to nearest upstream bifurcation, distance to
ostium (location where aorta meets coronary artery), minimum
upstream diameter, distance along centerline to minimum
upstream diameter, number of upstream bifurcations, average
upstream diameter, area of nearest upstream bifurcation and
area of previous centerline point. Similar properties are also
defined for the downstream vascular tree. In addition to these,
a lumen narrowing score is introduced, which quantifies how
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much the lumen is encroached upon based on a theoretical
estimate of healthy lumen radius. Note that this measure is
similar to the clinically measured % stenosis measure. To
define lumen narrowing score, we first introduce a health index
score. The health index score is defined as

κ(x) =
r(x)

rh(x)
(7)

where rh(x) is the theoretical healthy radius of the lumen and
r(x) is the radius of the maximum inscribed sphere. Shahzad
et.al. [26] described a Gaussian-kernel based estimate to
compute healthy lumen radius based on the measured radius.
However, the method described there is not directly applicable
here due to the significantly larger number of bifurcations,
steep variations in healthy lumen radii near bifurcations, and
need to capture different forms of lumen reduction such as
acute, diffuse, ostial, along bifurcations, etc. Hence, we adapt
the method given in Shahzad et.al. [26] by first defining three
different regressors to calculate rh given by the general form

rh(x) =

∑n
x′=1N (x′|x, sx)S(x′, x)wx′rx′∑n
x′=1N (x′|x, sx)S(x′, x)wx′

(8)

where wx = N (rx|rx,max, smax), n is the number of points
used in the regression, N (µ, s) is a Gaussian function with
mean µ and standard deviation s, and wx are Gaussian
weighting functions. The following regressors are used.
• a global fit, which uses a Gaussian kernel to fit the radius

from the ostium to the outlets (the function S(x′, x) is
unity)

• a sectional fit, which uses a Gaussian kernel but limited
within a section bound by the two closest bifurcation
locations (the function S(x′, x) is unity within the current
section and zero in all other sections).

• an anisotropic fit, where the Gaussian kernel is convolved
with a sigmoidal kernel centered at the nearest down-
stream bifurcation location, where the function S(x′, x)
is defined as

S(x′, x) =
1

1 + αe−kdoffset(x′,x)
,

doffset(x
′, x) = d(x′, xostium)− d(x, xostium)

−d(x, xup),

xup is the location of the nearest upstream branch to x
and d(., .) is the Euclidean distance.

Five paired parameter sets were chosen for each of these three
regressors, making a total of 15 health index scores. These
are given by sx = 6 ∗ (1 + (i − 3) ∗ 0.4), smax = 200 ∗
(1 + (i − 3) ∗ 0.4), rx,max = 0.25 ∗ (1 + (i − 3) ∗ 0.4) and
α = 0.1∗(1+(i−3)∗0.4), where i takes values of 1, 2, 3, 4, 5.

Lumen narrowing scores are calculated as δi(x) = 1−κi(x)
if κi(x) ≤ 1 and zero otherwise, where κi(x) is the health
index score for ith regressor. Figure 3 shows a schematic
of some geometric features used in the machine learning
algorithm.

2) Clinical features:
In this section, we describe some clinically derived non-

geometric features that potentially impacts FFRCT. Since the

functional significance of a lesion depends on flow demand
of the myocardial bed which in turn depends on myocardial
mass, we include myocardial mass as a clinical feature. In
addition, aortic blood pressure and body mass index (which
depends on height and weight) are added as features. Further,
resistance boundary conditions are calculated at each outlet
surface which are based on the net coronary flow and resis-
tance of each outlet (which is proportional to the area) [2].
Hence, for each centerline point, six features corresponding to
minimum, maximum and mean area and resistances of outlets
are calculated and added to the feature set. Blood viscosity,
which quantifies resistance of fluid to flow, is also added as a
feature. All of these are calculated on a patient-specific basis.

3) Reduced order models:
We assume that the flow split at each branch is inversely

related to the net downstream resistance. To calculate the
net downstream resistance, we approximate the geometric
resistance of a section of the vessel using Poiseuille’s law
as R = 8µL

πr4avg
and corresponding pressure loss as ∆Pi = RQi,

where µ is the dynamic viscosity of blood, L is the length
of section, ravg is the average lumen radius, Qi is the flow-
rate through the section and ∆Pi is the pressure drop. For
tighter stenoses (defined as those with greater than 50%), a
non-linear pressure loss proportional to Q2

i can be used [27].
It is also possible for the pressure to increase downstream of a
narrowing if the downstream area is higher than the upstream
area. This is due to the kinetic energy of blood being converted
to pressure energy (Bernoulli’s equation). Hence we define a
pressure recovery feature as Precovery =

rpost

rpre
where rpost is the

radius distal to the stenosis and rpre is the radius proximal
to the stenosis. Distal and proximal are defined based on
when the lumen narrowing score becomes zero as we traverse
downstream and upstream from the lesion respectively.

E. Adaptive multi-resolution algorithm:

The sensitivity analysis above is based on a specific defini-
tion of the stochastic space, which depends on the initial lumen
segmentation. This stochastic space depends on the location
and number of bifurcations and outlets. For instance, the right
coronary artery (RCA) has far few bifurcations and hence, has
a larger section length compared to the left anterior descending
artery (LAD) or the left circumflex artery (LCx). Further, a
missed bifurcation could change the sensitivity values assigned
to different parts of the coronary geometry. Adaptive multi-
resolution analysis achieves two objectives - (i) it removes
dependence of the sensitivity map on either the sectional
length or bifurcation location, and (ii) it localizes regions of
high sensitivity within sections and helps focus user edits to
a smaller region in the coronary model.

The first step of multi-resolution analysis is to perform a
sectional sensitivity analysis. Sections whose sensitivities are
above a chosen cutoff are split further at the mid-point. Hence,
every section which has a sensitivity above a cutoff is split into
two equal parts. Sensitivity analysis is recursively performed
on these two sections until the size of a section falls below
a pre-chosen spatial resolution. Hence, we obtain a sensitivity
map that spatially resolves regions of high sensitivity. This
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Fig. 3. Schematic of some geometric features used in the machine learning
algorithm showing the location of nearest upstream bifurcation, ostium, and
minimum upstream diameter, as well as location of nearest downstream
bifurcation and outlets with maximum area and resistance, and minimum area
and resistance for a given location a.

Fig. 4. Comparison of global and anisotropic lumen narrowing scores on
two vessels in two different patients illustrating that the methods are similar
in most of the coronary tree, but the anisotropic kernel is more accurate in
terminal branches, and accounts for natural reduction in radii near bifurcations
better.

helps efficient user review of the lumen segmentation by local-
izing sensitivity within sections to a chosen spatial resolution.
Details of implementing the algorithm is given in Algorithm
1.

Algorithm 1 Algorithm framework for performing adaptive
multi-resolution sensitivity analysis.

Compute sensitivity
for ∀sj ∈ S do

sectional sensitivity(sj .begin(), sj .end())
end for
output sensitivity map
sectional sensitivity(a, b)
compute features
compute sensitivities σ∗FFRCT
set l = b− a, resolution = 6 mm and σc = 0.05.
while σ∗FFRCT

≥ σc & l > resolution do
sectional sensitivity(a, (a+ b)/2).
sectional sensitivity((a+ b)/2, b).
end while

F. Gather data from multiple patients and compute sensitiv-
ities:

The stochastic collocation algorithm [7] is first used to
calculate the sensitivities in all patients. Following this, all
the features described in section 2 are calculated. Lower order
statistics of the features within each section are aggregated
(mean, standard deviation, minimum and maximum values).
A set of 240 patients from two clinical trials are randomly
split into a training set of 158 patients and a test set of 82
patients.

A list of all the features used, along with minimum and
maximum values of the features used in the training set are
reported in Table I.

feature name minimum maximum
number of downstream bifurcations 0 57
total downstream volume 2.51 14947.8
average downstream diameter 0.54 2.77
minimum downstream diameter 0.05 0.94
distance to minimum downstream diameter 0.08 185.00
area of nearest downstream bifurcation 0.25 22.07
distance to nearest downstream bifurcation 4.44 187.23
number of downstream outlets 1 58
total area of downstream outlets 0.49 53.79
inlet area 0.58 1109.84
lumen area 0.36 34.26
mean outlet resistance 3.18 227.39
estimated flow 0.01 1.46
estimated pressure 9511 16000
systolic pressure 100 170
diastolic pressure 55 100
height (cm) 148 181
weight(kg) 47 96
myocardial mass 64 282
number of upstream bifurcations 0 18
total upstream volume 4.61 8960.48
average upstream diameter 1.34 29.08
minimum upstream diameter 0.05 0.94
distance to minimum upstream diameter 0 130.99
area of nearest upstream bifurcation 0.25 22.07
distance to nearest upstream bifurcation 0 102.32
distance to ostia 0.0 200.43
is stenotic 0 1
net geometric resistance 0.01 11.42
geometric resistance 0.01 0.763
highest upstream disease burden (15) 0.12 1.00
pressure recovery factor 1.00 2.00
coefficient of variation in lumen area 0.05 0.29
FFR using machine learning 0.20 0.97
section length 0.11 106.15

TABLE I
FEATURES USED IN THE MACHINE LEARNING ALGORITHM, AND THEIR

MINIMUM AND MAXIMUM VALUES IN THE TRAINING SET. DISTANCES ARE
IN mm, AREAS IN mm2 AND VOLUME IN mm3 UNLESS OTHERWISE

SPECIFIED. SYSTOLIC AND DIASTOLIC PRESSURES ARE IN MILLIMETERS
OF MERCURY, MYOCARDIAL MASS IS IN GRAMS, AND PRESSURE DROP
AND RESISTANCES ARE IN g/mm/s2 AND g/mm4/s RESPECTIVELY.

G. Use machine learning to estimate sensitivity:

Bootstrap aggregated decision trees [28], having a linear
dependence of sensitivity on the features at the leaves, are
used to train the sensitivity data. Bootstrapping helps avoid
over-fitting the machine learning regressor on the training set.
The Weka library [29] is used to find the optimal bootstrap
aggregated decision tree. Further, to demonstrate the utility of
the three classes of features, namely geometric, clinical and
reduced order model, we first compute the optimal regressor
using only geometric features and analyze the correlation and
mean absolute error between predicted and actual sensitivi-
ties. Then, we include the clinical features and compute the
performance of the resulting optimal regressor. Finally, all the
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A B C

Fig. 5. Maximum lumen narrowing score, calculated as ∆max(x) =
maxi(δ

i(x)) over all the 15 regressors, is shown for three patient-specific
models with lesions of different size, shapes and locations. Start and end of
lesions are modeled based on when ∆max(x) crosses a threshold of 0.1.
Model A demonstrates that the algorithm is able to capture focal lesions.
Model B illustrates an example with a lesion near ostium which is also
captured by the lumen narrowing score. Model C illustrates the lumen
narrowing score on two lesions across bifurcations. All regions with non-zero
∆max are colored red.

three classes of features are included and the performance is
computed. Since some clinical features depend on geometry
(e.g. resistance depends on outlet area), we analyze results
only with a combination of clinical and geometric features,
and not clinical features in isolation. Similarly, the reduced
order features have a dependence on geometric and clinical
features.

H. Estimation of allowable variation in lumen area:

To understand the relationship between geometric sensitivity
and variability in lumen area, the sensitivities are divided into
bins of size 0.01 and the coefficient of variation in lumen area
within each bin is calculated. For instance, if the maximum
allowable sensitivity is 0.05, then all the data points whose
sensitivities are between 0.045 and 0.055 are pooled together.
The corresponding coefficient of variation are also binned in
steps of 0.01 and a histogram is constructed. The number of
samples within each bin in the histogram is normalized to yield
a probability value. These probabilities are then presented in
a surface plot to understand the relationship between a given
allowable sensitivity value and the range of c.o.v. in lumen
area associated with it.

III. RESULTS

First, we describe the relationship between the lumen nar-
rowing score and both measured FFR and FFRCT. We then
demonstrate that geometric data alone is not a sufficient
predictor of sensitivity of FFRCT to changes in geometry. We
then describe results using the multi-resolution analysis and
illustrate its ability to localize segments with high sensitivity.
Finally, we calculate the allowable coefficient of variation in
lumen areas for a given allowable sensitivity, and observe that
it has a strong relation with maximum allowable sensitivity.

Figure 4 highlights the difference in lumen narrowing score
between global and anisotropic kernels. An anisotropic kernel
allows for the natural variation in radii at bifurcations, as
hypothesized by Murray’s law (the cube of parent vessel radius

Fig. 6. Comparison of the highest upstream lumen narrowing score and (left)
measured FFR and (right) FFRCT with correlation coefficients of 0.42 and
0.48 respectively.
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Fig. 7. Comparison of the optimal machine learning regressor on the test set
using (left) only geometric features, (center) geometric and clinical features
and (right) geometric, clinical and reduced order model features. The figure
demonstrates that we get an increased degree of correlation as we include the
different class of features defined in section 2. Each point represents a section
of a vessel, and there are around 50 sections per subject dataset. The graph
was constructed over a test dataset of 82 subjects. The correlation coefficients
for the three plots are (from left to right) 0.53, 0.80 and 0.91 respectively. The
corresponding mean absolute error are 0.0195, 0.0137 and 0.0094 respectively.

is sum of cube of daughter vessel radii). By construct, the
global and anisotropic kernel regression are identical in regions
away from bifurcations. However, the global kernel may not
be accurate at bifurcations with steep reduction in area, which
is observed in terminal vessels.

Additionally, the 15 different lumen narrowing scores are
aggregated by calculating the highest lumen narrowing score.
Figure 5 shows the aggregate measure on three different
patient-specific models, capturing focal lesions, lesions near
ostium, and bifurcations. While a direct validation of this
score is only possible by comparison to invasively measured
% stenosis score, we compare the highest upstream lumen
narrowing score against both measured FFR and FFRCT.
Figure 6 shows a scatter-plot of the highest upstream lumen
narrowing score to both measured and simulated FFR, with
correlation coefficients of 0.42 and 0.48 respectively.

A comparison of the performance of the machine learning
algorithm on the testing set indicated that a bootstrap aggre-
gated decision tree regressor was optimal. Other candidate
regressors that were attempted were linear regressor, bagged
decision tree with linearly interpolated value at the leaves, and
decision stump. We achieved a correlation coefficient of 0.91,
mean absolute error of 0.0094 and root mean square error of
0.013 using the bagged decision tree regressor. Figure 7 com-
pares the relationship between sensitivities calculated using
only the geometric features, geometric and clinical features,
and all the features that are detailed in section 2. This clearly
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demonstrates that each of the classes of features adds value to
the performance of the final machine learning regressor, with
correlation coefficients of 0.53, 0.80 and 0.91 respectively.

increasing resolution

lesion b
lesion c

lesion a

lesion a

lesion c

lesion b

lesion d

lesion d

0 0.025 0.05 0.075 > 0.1
)

Fig. 8. Illustration of sensitivity map in the coronary arteries in a patient using
(from left to right) sectional sensitivity analysis, and multi-resolution analysis
with minimum length scale of 15 mm, 9 mm and 6 mm. The corresponding
sensitivities for four isolated lesions are also highlighted, demonstrating that
multi-resolution sensitivity analysis could localize regions of high sensitivity
within a section at a reduced computational overhead.

Multi-resolution sensitivity maps for a patient-specific ge-
ometry based on an uniform probability distribution function
are shown in Fig. 8. The figure shows sensitivity maps
computed using sectional sensitivity analysis and using mul-
tiresolution analysis with parameters of 15 mm, 9 mm and
6 mm. Using sectional sensitivity analysis, entire sections of
high sensitivity are highlighted. Hence, sectional sensitivity
analysis may not offer significant savings in user review time if
there are sections of large length without branching vessels. In
contrast, multi-resolution analysis helps refine sensitivities in
sections of large length. For instance, multi-resolution analysis
can help reduce review time in a section of length 100 mm by
around a factor of 15 if we set the multi-resolution threshold as
6 mm. Four different highlighted lesions in the figure show that
multi-resolution analysis offers a significant reduction in the
size of the region considered for user review. The highlighted
regions represent localized regions in the lumen segmentation
which has maximum impact on FFRCT, and hence diagnostic
performance.

A comparison of sectional and adaptive multi-resolution
sensitivity analysis on three patients is shown in Figure 9.
Isolated lesion sections are enlarged to illustrate how multi-
resolution analysis is able to focus the user on the most
sensitive locations within a section. Multi-resolution analysis
enables a more focused user review in regions within sections
of high sensitivity.

Finally, we compute the range of allowable standard devia-
tion in lumen area for a given maximum allowable sensitivity.
A surface plot with the probabilities calculated for each

0 0.025 0.05 0.075 > 0.1
)

Fig. 9. Comparison of sectional sensitivity analysis(top) and multi-resolution
sensitivity analysis(bottom) for three patient-specific coronary arteries. Sec-
tions of high sensitivity are highlighted for each patient, and the effect of
adaptive multi-resolution analysis in localizing region of high sensitivity to a
lesion is depicted. Adaptive multi-resolution sensitivity analysis helps reduce
review time from inspecting entire sections of high sensitivity to the relevant
localized regions within each section.

sensitivity bin is shown in Figure 10. We observed a monotonic
increase in the peak allowable coefficient of variation in lumen
area, with the 5th percentile values for allowable sensitivities
of 0.05 and 0.1 being 6% and 11% respectively. The observed
differences also illustrates the relationship between segmenta-
tion accuracy and simulation accuracy.
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Fig. 10. Surface plot of probability distributions of allowable coefficient of
variation (ratio of standard deviation to mean value) in lumen area for a
range of allowable sensitivity values is shown on the left, demonstrating that
if the allowable sensitivity is higher, then the normalized standard deviation
in lumen area can be higher. Comparison of the probability distribution of
allowable coefficient of variation in lumen area for a given desired error in
FFRct. Average allowable coefficient of variation for an allowable error of
0.05 is 16% and average allowable coefficient of variation for an allowable
error of 0.1 is 21%. The 5th percentile values corresponding to errors of 0.05
and 0.1 are 6% and 11% respectively.

IV. DISCUSSION

Sensitivity analysis quantifies how local lumen segmenta-
tion affects global hemodynamics. Here, we focused on a
hemodynamically derived quantity of interest used in diagnosis
of coronary disease, namely FFRCT. Sections of lumen are
chosen and they are assigned a sensitivity value based on
the worst impact of uncertainty in the sectional lumen area
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on FFRCT. In general, the magnitude of uncertainty in lumen
segmentation might depend on image quality, e.g. contrast-
to-noise ratio, presence of artifacts such as mis-registration
or motion, etc [30]. Using the framework developed here,
different sections can have not just different coefficient of
variations, but also different probability distribution function
using a different random variable ξj associated with each
section. For example, lumen segmentation in the vicinity of
misalignment or blooming artifact can be modeled to have a
different coefficient of variation compared to the rest of the
coronary tree.

We quantified sensitivities in near real time using a machine
learning approach. A combination of geometric, clinical and
reduced-order features were used as features and a database of
patient-specific geometries and parameters were used to train
the data. A hybrid approach for quantifying lumen narrowing
score was used, which is able to detect regions of lumen
narrowing for focal lesions, those near bifurcations and ostia.
A direct validation of the lumen narrowing score is only
possible by comparing these values against those measured
by a trained cardiologist. The correlation coefficient between
lumen narrowing score and the measured FFR was 0.42,
which was comparable to values that were clinically reported
(correlation of 0.32) [31]. The correlation coefficient between
lumen narrowing score and FFRCT was 0.48. We achieve
a good performance using the machine learning algorithm,
with a correlation coefficient of 0.91 and mean absolute error
of < 0.01, compared to sensitivities calculated using the
stochastic collocation method. Real-time sensitivity analysis
enables user review of segmentation only in regions of the
coronary tree which affect the hemodynamics, which is a small
fraction of the entire coronary tree.

We introduced a method for multi-resolution sensitivity
analysis to further focus attention within sections of high
sensitivity. The algorithm initializes sensitivity values using
sectional sensitivity analysis, and in regions of sensitivity
above a cutoff, splits the section into two and re-evaluates
sensitivities. The algorithm terminates when either there are
no sections with sensitivity larger than cutoff, or when we
reach a minimum spatial resolution. Since sensitivities are
meaningful only when a section of the vessel is considered,
we do not resolve beyond 6 mm. We were able to resolve and
localize regions of high sensitivity, and the resultant sensitivity
map helps focus attention on a much smaller region compared
to sectional sensitivity analysis. Based on results in a few
patients, we hypothesize that savings of more than a factor
of 10 can be achieved using the multi-resolution algorithm.

It is important to note that regions of high sensitivity are
not necessarily regions of lumen narrowing, or vice versa.
Segmentation accuracy might be important in vessels that are
important for blood transport downstream, e.g. ostial sections,
and sections that branch off of left main into LAD and LCx.
Similarly, in vessels with serial lesions, it is not possible
to analytically predict which lesions will be important. For
instance, if a proximal lesion is tighter than the distal lesion,
it is likely that proximal lesion would be more sensitive.
However, if distal lesion is tighter, then it is not possible
to predict analytically which lesion is more sensitive since

)

0 0.025 0.05 0.075 > 0.1
>0.1

<=0.1

Fig. 11. Map of lumen narrowing score in three vessels juxtaposed with
the corresponding multi-resolution sensitivity maps, illustrating that regions
of high sensitivity are not necessarily regions of largest lumen narrowing.
All the three vessels indicate that sensitivity in proximal vessels could be
high even in the absence of disease, since they are critical to blood transport
and under-segmentation impacts diagnosis. Figure on top left illustrates an
example of four serial lesions and the second lesion dominating, which can
only be computed using accurate flow modeling. The figure on the top right
illustrates an example where a proximal lesion is the highly sensitive lesion,
whereas the figure on the bottom illustrates an example of two sensitive lesions
in a vessel.

it is a combination of flow through the lesion and pressure
drop across the lesion. Similarly, if a vessel splits and there
are lesions on both branches, it is not possible to predict
analytically the sensitivities in each of these lesions. The
importance of each class of features was demonstrated by
comparing the optimal machine learning regressor using only
geometric features, and hierarchically including clinical fea-
tures and reduced order model features. The results showed
that the mean absolute error is reduced by around a factor
of two between only geometric features and the whole set
of features. Similarly, there was a corresponding increase in
correlation coefficient from 0.52 to 0.91.

Figure 11 illustrates three vessels where high sensitivities
are not necessarily regions of highest lumen narrowing score.
In all cases, the proximal section closest to the ostium has
moderate to high sensitivity since they are important to
blood transport and under-segmentation would drop blood flow
through the rest of the vessel. In the first case, a mid-lesion
of large stenosis severity is most sensitive while the rest are
not, whereas in the last example, both proximal and mid-
lesions are sensitive. If there is a lesion on each of two vessels
that bifurcate of a parent vessel, the relative ratio of lesion
resistance to downstream boundary resistance of the vessels
will be an important factor in the determination of sensitivity
information.

We also compared the allowable coefficient of variation in
lumen area for a given allowable standard deviation in FFRCT.
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The results showed that less than a 6% coefficient of variation
in lumen area will translate into a sensitivity of FFRCT of
less than 0.05 with 95% confidence. Similarly, a coefficient
of variation in lumen area of less than 11% will translate
into a sensitivity of less than 0.10 with 95% confidence. In
other words, based on the accuracy of lumen segmentation
algorithm, an assessment of error in FFRCT can be made.

One limitation of our algorithm is that the results depend
on the initial segmentation. The impact of this dependence
was reduced by using the multi-resolution algorithm, but a
dependence still exists. For instance, if a lumen narrowing
is entirely missed in the initial segmentation, sensitivity in-
formation will not be captured unless the uncertainty zone
encompasses the true lumen. Hence, a more accurate uncer-
tainty model that accounts for image quality and initial lumen
segmentation is needed to enable sensitivity computation when
initial segmentation is poor. Another limitation of this work is
that the uncertainty in flow and pressure at bifurcations is not
calculated using CFD for the ground truth, hence they are not
captured using the perturbation model used in this work. Also,
it is not well understood if the uncertainty in different lesions
are correlated. While our manual correction process (user
edits) are not correlated across lesions, modeling correlation
might help better assess overall uncertainty of FFRCT at
measurement locations. Further, the geometric sensitivity near
regions of bifurcations are not captured in the training dataset.

In conclusion, we developed a method that calculates and
outputs regions of a coronary vessel tree based on impact of a
local vessel section on global hemodynamics. We demonstrate
that regions of anatomic narrowing are correlated poorly with
regions of high sensitivity, and the true impact of segmentation
can only be assessed using a combination of flow modeling,
pressure drop and downstream resistance. We also developed a
multi-resolution algorithm that spatially refines regions of high
sensitivities to a desired resolution. This significantly reduces
the overhead for user edits of lumen segmentation compared to
editing the entire lumen segmentation. However, correlations
between different parts of the lumen are not modeled. Also,
we assumed that the true geometry is encompassed within the
limits of the stochastic space that is explored, which may not
be accurate in some extremal cases.
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