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Abstract
Objectives Our goal was to evaluate the efficacy of a fully automated method for assessing the image quality (IQ) of coronary
computed tomography angiography (CCTA).
Methods The machine learning method was trained using 75 CCTA studies by mapping features (noise, contrast, misregistration
scores, and un-interpretability index) to an IQ score based on manual ground truth data. The automated method was validated on a
set of 50 CCTA studies and subsequently tested on a new set of 172 CCTA studies against visual IQ scores on a 5-point Likert scale.
Results The area under the curve in the validation set was 0.96. In the 172 CCTA studies, our method yielded a Cohen’s kappa statistic
for the agreement between automated and visual IQ assessment of 0.67 (p < 0.01). In the group where good to excellent (n = 163), fair
(n= 6), and poor visual IQ scores (n= 3)were graded, 155, 5, and 2 of the patients received an automated IQ score > 50%, respectively.
Conclusion Fully automated assessment of the IQ of CCTA data sets by machine learning was reproducible and provided similar
results compared with visual analysis within the limits of inter-operator variability.
Key points
• The proposed method enables automated and reproducible image quality assessment.
• Machine learning and visual assessments yielded comparable estimates of image quality.
• Automated assessment potentially allows for more standardised image quality.
• Image quality assessment enables standardization of clinical trial results across different datasets.

Keyword Computed tomography angiography . Coronary vessels . Cardiac imaging techniques . Machine learning . Image
enhancement

Abbreviations
AUC Area under the curve
CAD Coronary artery disease

CCTA Coronary computed tomographic angiography
CNR Contrast-to-noise ratio
FFR Fractional flow reserve
ICA Invasive coronary angiography
IQ Image quality
ML Machine learning

Introduction

Advances in coronary computed tomographic angiography
(CCTA) have improved our ability to assess plaque coronary
characteristics, anatomical stenosis severity, and subsequently
functional significance [1–3], which helps in the detection of
coronary artery disease (CAD) [4, 5]. In general, CCTA im-
ages are obtained from prospective padding or retrospective
gating protocols from multiple phases and can provide rich
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information to evaluate coronary arteries. Quantification of
image quality (IQ) provides useful information regarding the
ability to extract information from the CCTA and is usually
evaluated visually by readers [6]. Therefore, the selection of
the optimal phase with the best IQ to be used for assessment of
CAD is a time-consuming process. The IQ may also vary
within and between observers.

Studies on automated assessment of IQ have generally
focused on either the global characteristics of poor IQ, such
as low contrast, high noise, and a low contrast-to-noise ratio
(CNR), or local IQ metrics such as motion or misregistration
[7–9]. While an automated assessment of such IQ metrics
may be beneficial, validation against core-lab assessment by
expert readers is necessary for such metrics to be clinically
useful.

In this article, we describe a new method for automated
assessment of IQ of CCTA data sets by comparing it with a
visually estimated IQ score.

Materials and methods

Study population

Briefly, the DeFACTO study and the DISCOVER-FLOW
study were multinational prospective clinical trials for evalu-
ating the diagnostic accuracy of fractional flow reserve (FFR)
derived from CT (FFRCT) compared with invasive FFR [3,
10]. All patients were clinically referred to invasive coronary
angiography (ICA) for evaluation of CAD. All patients
underwent a CCTA and an ICA with FFR. Patients with by-
pass grafts, stents, and chronic total occlusions were excluded.
Each participating institution obtained Institutional Review
Board approval, and all patients signed informed consent
forms. Among 388 patients enrolled in the DeFACTO study
(n = 285) or the DISCOVER-FLOW study (n = 103) [3, 10],
we identified 297 patients for the current study after excluding
91 because of the absence of contrast (n = 3) or insufficient
automated centreline extraction (n = 88). Though cases with
insufficient automated centrelines also had many regions of
un-interpretability, we excluded them because the ML algo-
rithm relies on centreline location to calculate features.
Overall, 125 patients for the training set (n = 75) and valida-
tion set (n = 50) were randomly selected for theML algorithm,
and the remaining 172 patients were used for comparing IQ
between the automated and manual assessments (Fig. 1).

CT image acquisition protocol

Details regarding the CT image protocol and analysis were
documented in prior publications [10, 11]. In brief, all patients
underwent a ≥ 64-slice CCTA scan (Lightspeed VCT, GE
Healthcare, Milwaukee, WI; Somatom Sensation and

Definition CT, Siemens, Forchheim, Germany; Brilliance
256 and 64, Philips, Surrey, UK; Aquilion One and 64,
Toshiba, Otawara, Japan). In accordance with the Society of
Cardiovascular Computed Tomography guidelines [6], pa-
tients received oral and/or intravenous beta-blocker medica-
tion to achieve a target heart rate of 60 beats or less per minute.
They also received sublingual nitroglycerin for coronary ar-
tery dilation. In study 1, 72 % of patients received beta-
blockers, but this information was not available for study 2.
Scan parameters were obtained as follows: tube voltage 100 or
120 kVp, ≤ 0.75 mm slice thickness, and 512 × 512 matrix
size. Helical or axial scans were obtained with prospective or
retrospective electrocardiogram triggering. Scan parameters
of non-contrast CT were obtained as follows: tube voltage
120 kVp, ≤ 3 mm slice thickness, and 512 × 512 matrix size.

IQ assessment at an automated IQ core laboratory

An ML approach was used to map features of the CCTA
images and automatically compute an IQ score in a blinded
manner (Fig. 2). A manual IQ assessment was used as ground
truth to train the system. This assessment was performed by
trained readers who labelled cases deemed readable or unread-
able as 1 or 0, respectively. We trained on this binary score
instead of the Likert score to ensure a more reproducible
ground truth. Since we train multiple random trees, an aver-
aging of the binary outputs of individual trees can be scaled to
4 and interpreted as a Likert score. Some CCTA studies with
different artefacts as well as two cases annotated as excellent
and poor IQ are shown in Fig. 3. Readers were allowed to
reject a scan for reasons such as vessels being un-
interpretable because of high noise or CNR, heavy cardiac
motion, blooming, calcification, and/or a large number of
misregistrations.

Automated ostium detection, centreline extraction, and lu-
men segmentation were performed on these CCTA scans prior
to the readers’ assessment. The centrelines and lumen seg-
mentation information were necessary because a key feature
in the algorithm was the use of local IQ metrics, which were
defined based on centrelines and lumen segmentation. In-
house algorithms were used for the extraction of the centreline
tree and the lumen segmentation. For purposes of this study,
cases that fail the automated centreline detection or lumen
segmentation were removed from the ground truth data set.

Global features: Figure 2 illustrates the schema of the ML
method. First, misregistration, which occurs because of pa-
tient motion and is visible as a shift across image slices, was
calculated directly from the image based on intensity correla-
tion across neighbouring slices. Gradients in image intensity

were calculated for each slice as Gi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
xi þ G2

yi

q

, where Gi

is the magnitude of intensity gradients for slice i, and Gx and
Gy are gradients in the x and y directions respectively. The
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cross-correlations between image intensity and gradients of
neighbouring slices were used to arrive at a misregistration
score. The mean magnitude, maximum magnitude, and number
of misregistrations were calculated and included as features.
Following this, voxels within and surrounding the aorta were
identified to calculate noise, contrast, and background intensity.
The average intensity of the voxels representing the aorta was
calculated, and the average background intensity (voxels outside
the aorta) was subtracted; the result (intensity – background) was
assigned as contrast. The standard deviation of voxels within the
aorta was also calculated and assigned as noise.

Local features: Image intensities on a 3 × 3 pixel grid
around each centreline point were extracted. Statistics of these
metrics (standard deviation, maximum and minimum) were
calculated. In addition, the entropy value of lumen intensities
(H) was calculated as H = ∑ ipi log (pi) where pi are

probabilities of different intensity levels. Finally, an image
sharpness estimate was calculated using a wavelet transform.

An additional feature, the standard deviation in the lumen
area, was derived from the local features. The ground truth for
this feature was based on a variability sub-study, wherein 15
readers performed manual lumen segmentation on the same
set of patients and the coefficient of variation (COV) in the
lumen area was assessed. A total of around 3000 vessel sec-
tions from five patients was used for assessment of COV. A
linear regressor was used to map the local features to the COV
in the lumen area. This value reflects the difficulty in assess-
ment of lumen boundaries. A subset of the training data was
used for this task.

Un-interpretability index: A predictive classifier is built
that maps the local features and the standard deviation in the
lumen area into a local binary un-interpretability index trained

Fig. 2 A schematic of the algorithm used to calculate the overall IQ score
from a CCTA. First, global features that can be extracted directly from the
image are computed. Then, an automated centreline extraction and lumen
segmentation step are performed. A set of local features, which vary with
space, is then calculated. These features are fed into twomachine-learning

algorithms for predicting lumen uninterpretability and the coefficient of
variation in the lumen area respectively. The local features are statistically
aggregated and combined with the global features to yield an overall IQ
score. IQ, image quality; CCTA, coronary computed tomographic
angiography, ML, machine learning, CNR, contrast-to-noise ratio

Fig. 1 Schematic of the study
design. The figure also shows the
exclusion criterion and the split of
the data into training, validation
and test sets
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on the un-interpretable regions identified by human readers. A
random forest regressor was used to map the local image fea-
tures to the un-interpretability index. The random forest re-
gressor is an aggregate of random trees, where each random
tree is a decision tree built on a random subset of features. For
instance, one decision tree might be built on the CNR and
motion, whereas another may be built on the COV in the
lumen area and misalignment. The power of random forests
lies in combining many trees, where the trees are built with
only a subset of the features. The decision-making criterion in
each tree is decided such that the random forest regressor
provides optimal output on the training data.

IQ score: The global features listed in the previous sub-
section and the derived local features (themean andmaximum
un-interpretability index) are used to calculate an overall IQ
score. A bootstrap aggregated random forest is used for clas-
sification and an IQ score is calculated as the mean value of
the individual decision trees, converted to percentage.

The score ranges between 0 and 100% for each CCTA.A ≥
50 % is defined as good to excellent IQ and < 50 % is poor to
unevaluable IQ. The calculation of automated IQ score per
CCTA required less than a minute.

The ML algorithm was validated on two sets of data—
initially, the binary uninterpretability index was validated on
a binary test set of 50 CCTA studies. Subsequently, the actual
score was tested on manual core-lab scores on 172 CCTA

studies. The rationale for not training on the Likert score
was the larger variability and subjectivity in the Likert scores
compared with a binary uninterpretability index. Cross-
validation on the training set was used to find the optimal
parameters for the decision forest. Further, we used a
Cohen’s kappa statistic to quantify the agreement between
manual and automated IQ.

IQ assessment at a CT core laboratory

The overall IQ was reviewed on axial, sagittal, and coronal
reformats in segments with > 1.5-mm luminal diameter at the
CT core laboratory. IQ per segment was evaluated on
multiplanar reformats using an 18-segment American Heart
Association coronary model [6] by a CT core laboratory
(Los Angeles Biomedical Research Institute, Torrance, CA,
USA) in a blinded manner. Two expert readers with Society
of Cardiovascular Computed Tomography level 3 reviewed
the images and manually provided IQ scores for each individ-
ual segment. The score was given based on a 5-point Likert
scale as follows: 4, excellent: clear delineation of vessel lumen
boundaries without artefacts; 3, good: reserved ability to eval-
uate vessel lumen boundaries in the presence of artefacts; 2,
fair: sufficient information to evaluate vessel lumen bound-
aries having a reduced IQ due to artefacts; 1, poor: impaired
ability to evaluate vessel lumen boundaries because of

Fig. 3 Examples of some cases that were manually rejected because of
(a) cardiac motion, (b) noise, (c) blooming (dotted)/misregistration, and
(d) low contrast. The red arrows point to locations where the impact of the
artefact is visible. It is not uncommon for CCTA scans to have multiple

artefacts simultaneously. Examples of two CCTA studies, one with
excellent and one with poor IQ, are shown in (e) and (f) respectively.
LAD, left anterior descending artery; LCx, left circumflex; RCA, right
coronary artery
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artefacts; 0, unevaluable: unable to evaluate vessel lumen
boundaries because of artefacts [12–14] (Fig. 4). The visual
IQ metric was normalised to a range of 0 and 4 and multiplied
by 25, replicating a metric similar to the automated IQ score
between 0 and 100. All the scores were independently and
blindly assessed from automated IQ reads.

Statistical analysis

Continuous variables for age, height, weight, body mass in-
dex, systolic pressure, diastolic blood pressure and heart rate
were expressed as the mean ± standard deviation (SD) in the
descriptive statistics. Median was chosen for the Agatston
score because it was not normally distributed. The Wilcoxon
signed-rank test was used to compare IQ between automated
and core-lab assessments. A p < 0.05 was used to indicate
statistical significance. A Cohen’s kappa statistic was used to
quantify the agreement between manual and automated IQ.
Since a binary classification was used to assess manual repro-
ducibility, we also measured the Cohen’s kappa statistic in a
similar manner. Though we stratified images into five buckets
based on the Likert scale, we used a binary classification (the
automated and manual image qualities either fall into the same
bucket and are concordant, classified as 1, or discordant, clas-
sified as 0) for the calculation of kappa values. Weighted kap-
pa on the 5-point Likert scale was not appropriate here be-
cause we compared the kappa against reproducibility between
two independent readers, which were reported in the literature
using a binary classification. Confidence intervals in Cohen’s
kappa statistic were also measured.

Results

Baseline patient characteristics for the study population of 172
patients are listed in Table 1. The fraction of male patients was
71.5 %. Two-thirds of patients had hypertension or hyperlip-
idaemia and 22 % of those had a history of CAD. Mean heart
rate was 60.2 ± 0.7 beats/minute. The median coronary artery
calcium Agatston score was 358. Overall, there was no signif-
icant difference between the study population in the training/
validation and the test sets (p > 0.05 for all).

Based on a five-fold cross-validation on the training set, six
features per tree on 101 decision trees was found to be opti-
mal. The sensitivity, specificity, and accuracy of correctly
classifying the un-interpretability index during cross-
validation were 89 %, 93 %, and 92 % respectively. The per-
formance on the validation (test) set showed a high accuracy
of 94%, with a corresponding sensitivity, specificity, and pos-
itive and negative predictive value of 96 %, 91 %, 90 %, and
96 % respectively. The area under the receiver-operating char-
acteristics curve for the un-interpretability index was 0.96
(Fig. 5).

Figure 6a shows the comparison of the COV in the lumen
area between a machine learning method and the ground truth
using a linear regressor. A correlation coefficient of 0.78 was
achieved with the corresponding mean absolute error and root
mean square error being 0.051 and 0.065 respectively.
Figure 6b illustrates a histogram of the difference between
automated IQ and core-lab assessments. The 95 % confidence
intervals were within a Likert score of 2. The automated IQ
score had a kappa of 0.67 (0.59-0.75), p < 0.01 against the
visual IQ score, corresponding to a true-positive (TP), true-
negative (TN), false-positive (FP), and false-negative (FN)
count of 17, 141, 7, and 7 respectively. In the group where a
good-to-excellent (n = 163), fair (n = 6), and poor visual IQ
score (n = 3) were graded, 155, 5 and 2 of patients received an
automated IQ score > 50 %, respectively.

Overall, 2392 segments among 172 patients were assessed
for the visual IQ score. During segmental analysis, 43 (1.8 %),
30 (1.3 %), 192 (8.0 %), and 2127 segments (89.1 %) were
visually scored as having an IQ of 0 or 1, 2, 3, and 4,

Fig. 4 The figures demonstrate an example of the 5-point Likert scale. A
score of 0 is given when vessel lumen boundaries are unevaluable
because of artefacts (unevaluable). A score of 1 is given when
delineating vessel lumen boundaries are impaired because of artefacts
(poor). A score of 2 is given when vessel lumen boundaries can be
sufficiently evaluated in the presence of artefacts (fair). A score of 3 is
given when vessel lumen boundaries are fully evaluable in the presence of
mild artefacts (good). Lastly, a score of 4 is given when clear delineations
of vessel lumen boundaries are possible in the absence artefacts
(excellent). IQ, image quality
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respectively. Overall, in 265 segments with visual IQ scores <
4, there were 277 reasons for reducing the IQ. The most com-
mon reason for artefact was misalignment (35.4 %), followed
by motion (30.0 %), image noise (22.0 %), coronary calcifi-
cation (10.1 %), poor contrast (1.8 %), and others including
beam hardening or segment after long total occlusion (0.7 %).
Table 2 lists the distribution of reasons causing visual artefact
by IQ scores. Motion artefacts were commonly associated
with very poor/fair IQ scores, followed by misalignment, im-
age noise, and coronary calcification.

Finally, we evaluated the reproducibility of the image qual-
ity method by running the algorithm thrice on the same image
inputs. The results were identical, thereby demonstrating that
the automated algorithm is 100 % reproducible.

Discussion

The goal of our study was to demonstrate the performance and
efficiency of a fully automated ML method to assess IQ. To
our knowledge, this is the first study investigating automated
assessment of CCTA IQ with a direct comparison with a man-
ual core-lab read. We demonstrated that the agreement be-
tween the automated and visual IQ scores was similar to
inter-observer variability in IQ reported by Sun et al. [16] with
a kappa of 0.68. In addition, the proposed method enables fast
patient-specific estimation of IQ on CCTA studies. We also
demonstrated the reproducibility of the algorithm, which is
not surprising since, given a training data set, there are no
stochastic components in the algorithm.

Table 1 A summary of study demographics for the training/validation and test set

Training/validation set
(n = 125)

Test set
(n = 172)

p value

Age (years) 63.4 ± 8.5 62.8 ± 8.8 0.47

Male gender 69.5 % 71.5 % 0.49

Height (cm) 169.5 ± 9.3 169.7 ± 9.1 0.50

Weight (kg) 79.6 ± 15.4 76.6 ± 14.2 0.61

Body mass index (kg/m2) 27.5 ± 3.9 26.5 ± 3.7 0.38

Hypertension 69.9 % 71.8 % 0.45

Diabetes 20.5 % 21.2 % 0.57

Hyperlipidaemia 86.7 % 76.2 % 0.22

Never smoker 50 % 38.4 % 0.27

Former smoker 39 % 41.3 % 0.63

Current smoker 11 % 20.3 % 0.31

History of coronary artery disease 14.5 % 22.2 % 0.29

Coronary artery calcium score (median) 320 358 0.19

Systolic blood pressure (mmHg) 134.9 ± 19.9 134.8 ± 17.9 0.50

Diastolic blood pressure (mmHg) 76.8 ± 10.4 77.9 ± 11.2 0.55

Heart rate (bpm) 63.5 ± 10.4 60.2 ± 9.5 0.43

Fig. 5 (a) Performance of the
machine-learning algorithm on an
initial validation set of 50
patients. Green dots represent
correctly classified cases, with the
x-axis denoting ground truth and
y-axis being the automated IQ
score. The x-axis is randomised to
show the scatter of the points,
since the ground truth values are
binary and (b) the corresponding
ROC curve having an area under
the curve of 0.96. ROC, receiver-
operator curve; IQ, image quality
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The most recent guideline has suggested that standardised
and optimised interpretations of the CCTA results help guide
optimal patient care [17]. Despite advanced CCTA technolo-
gies, the prevalence of artefacts remains a limitation of this
technique. In a previous meta-analysis of 27 studies analysing
22,798 segments, 4.2 % of segments were excluded from
analysis because of unassessable IQ [18]. A previous
multicentre study showed lower un-assessable segments with
2.9 % including motion artefact (75.6 %), coronary calcium
(15.3 %), and poor contrast (8.4 %), whereas 15 % of patients
still possessed at least one unevaluable segment [19]. Our
results are consistent with these studies, demonstrating 3.1
% of segments were visually assessed as poor/unevaluable
IQ. Since these cases in general take the most time for manual
assessment, the automated algorithm would result in signifi-
cant savings in analyst time. Moreover, motion artefact was
the most common reason causing poor IQ and was seen in
two-thirds of un-interpreted segments in the current study (1.8
% of total). This observation is also concordant with the study,
showing 2.2 % of total segments were presented with motion
artefacts [19].

IQ assessment by the proposed ML approach has the po-
tential to reduce CT image evaluation time, thereby enabling
automated selection of the optimal CT phase. In fact, the cal-
culation time of automated IQ score per phase was less than a
minute in the current study. Since we did not record how long
the visual evaluation took, we could not directly compare the
required time between the twomethods. This automatedmeth-
od for measuring IQ may also be used to stratify data sets in
clinical trials so that the performance may be assessed across
different levels of image quality. Automated IQ measurement
per se would not improve study quality, but would help a
physician to select the best phase with best IQ from multiple
phases, which may avoid diagnostic misinterpretations caused
by the selection of a phase with artefacts.

Our findings demonstrated good concordance of IQ
assessed by machine learning and tested against manual as-
sessment by expert readers, which potentially allows for a
more standardised IQ. Further, such standardisation by the
automated algorithm would negate any effects of analyst com-
petence and experience, which are critical in manual assess-
ment of image quality.

Fig. 6 The figure shows (a) comparison of COV in the lumen area
estimated using a machine-learning method compared with ground truth
data. This sub-analysis was performed by having the same image
assessed by 15 readers to estimate the coefficient of variation in the
lumen area and (b) comparison of the difference between the manual

and automated IQ algorithm normalised to a scale between 0 and 4.
The 95 % confidence bounds of core-lab reproducibility based on inter-
observer variability as quantified by Sun et al. [15] are also shown,
demonstrating that the difference between the automated and manual IQ
score in most of the CCTA studies lies within these bounds

Table 2 Segmental scores and their source corresponding to calcification, motion, noise, contrast, and misalignment

Total
(n = 277 reason
in 237 segments)

Visual IQ score 0
(n = 45 reasons
in 43 segments)

Visual IQ score 1
(n = 2 reasons
in 2 segments)

Visual IQ score 2
(n = 35 reason
in 30 segments)

Visual IQ score 3
(n = 195 reason
in 192 segments)

Calcification (n, %) 28 (10.1 %) 1 (2.2 %) 0 (0 %) 5 (14.3 %) 22 (11.3 %)

Motion (n, %) 83 (30.0 %) 29 (64.5 %) 2 (100 %) 14 (40.0 %) 38 (19.5 %)

Image noise (n, %) 61 (22.0 %) 5 (11.1 %) 0 (0 %) 12 (34.3 %) 44 (22.6 %)

Poor contrast (n, %) 5 (1.8 %) 0 (0 %) 0 (0 %) 2 (5.7 %) 3 (1.5 %)

Misalignment (n, %) 98 (35.4 %) 9 (20.0 %) 0 (0 %) 2 (5.7 %) 87 (44.6 %)

Others (n, %) 2 (0.7 %) 1 (2.2 %) 0 (0 %) 0 (0 %) 1 (0.5 %)
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There are numerous clinical applications of the proposed
methodology. First, the method allows a real-time assessment
of IQ. Second, the IQ is possibly an indicator of confidence in
diagnostic accuracy though clinical validation studies are
needed to confirm this.

There are certain limitations in the current study. Our study
was a sub-study of the prospective multicentre study evaluat-
ing the diagnostic accuracy of FFRCT compared with invasive
FFR. Most of the cases met the inclusion criteria of the study
with good/excellent IQ for assessing FFRCT. However, the
dependency of the machine-learning algorithm on the ability
to extract centrelines resulted in some of the patients being
excluded from the study, though a majority of such cases also
had an uninterpretable CCTA. One potential way to mitigate
this is to train a second machine learning classifier that
operates on a reduced feature set that does not take the
centreline locations as inputs. In this regard, the feasibility of
an automated method for evaluating IQ score in the real world
remains uncertain. However, the prevalence of segments with
un-assessable IQ in the current study was similar to that in a
prior meta-analysis [18]. In addition, in this work, the confu-
sion matrix (TP, TN, FP, and FN) does not contain a similar
number of good and poor IQ data. In the final test set, there are
more cases with good IQ than poor IQ. While our operating
point sensitivity and positive predictive value on the valida-
tion set were 96 % and 90 % respectively, we did not have a
sufficient number of rejected samples in the test set to power
this observation statistically. Further, we were missing data on
prior medication, which could have potentially impacted im-
age quality. Finally, the relationship between image quality
and diagnostic performance needs to be assessed.

Conclusion

We developed an automated and reproducible method for as-
sessment of IQ that compares well with the limits of inter-
operator variability.
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