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A Stochastic Collocation Method
for Uncertainty Quantification and
Propagation in Cardiovascular
Simulations
Simulations of blood flow in both healthy and diseased vascular models can be used to
compute a range of hemodynamic parameters including velocities, time varying wall
shear stress, pressure drops, and energy losses. The confidence in the data output from
cardiovascular simulations depends directly on our level of certainty in simulation input
parameters. In this work, we develop a general set of tools to evaluate the sensitivity of
output parameters to input uncertainties in cardiovascular simulations. Uncertainties can
arise from boundary conditions, geometrical parameters, or clinical data. These uncer-
tainties result in a range of possible outputs which are quantified using probability
density functions (PDFs). The objective is to systemically model the input uncertainties
and quantify the confidence in the output of hemodynamic simulations. Input uncertain-
ties are quantified and mapped to the stochastic space using the stochastic collocation
technique. We develop an adaptive collocation algorithm for Gauss–Lobatto–Chebyshev
grid points that significantly reduces computational cost. This analysis is performed on
two idealized problems – an abdominal aortic aneurysm and a carotid artery bifurcation,
and one patient specific problem – a Fontan procedure for congenital heart defects. In
each case, relevant hemodynamic features are extracted and their uncertainty is quanti-
fied. Uncertainty quantification of the hemodynamic simulations is done using (a) sto-
chastic space representations, (b) PDFs, and (c) the confidence intervals for a specified
level of confidence in each problem. �DOI: 10.1115/1.4003259�
Introduction
Over the past decade, computational simulations have become

n increasingly powerful tool to study the cardiovascular system.
here has been a significant increase in the sophistication and
linical applicability of computational tools for patient-specific
odeling of blood flow. This includes the capacity to build real-

stic and complex three-dimensional models directly from image
ata, to obtain velocities, pressure data, and mechanical properties
f blood vessels from clinical and experimental data, and to per-
orm simulations with greater physiologic reality. Simulations
ave played a key role in understanding hemodynamics of bypass
rafting �1–3�, cardiovascular treatment planning �4,5�, athero-
clerosis in the carotid artery �6�, and abdominal aorta �7,8�, the
ffects of exercise on aortic flow conditions �7�, congenital car-
iovascular disease �9–12�, and coronary stents �13–15�. Yet, for
imulations to be reliable and be put into widespread clinical use,
t is essential to systematically quantify the level of confidence we
an place on simulation outputs.

Usually, a single computational simulation is performed and
esults such as shear stresses and velocities are deterministically
uantified. However, our hypothesis is that in a variety of situa-
ions, the outputs can be quantified only probabilistically due to
he presence of noise in the input data. Simulations are only as
ccurate as the data that goes into them and a thorough study is
eeded to determine how variations in these input data affects the
utputs. In addition, when evaluating new surgical designs, we
eed to ensure that the changes due to design parameters are more
ignificant than noise caused by input uncertainties. In this paper,

Contributed by the Bioengineering Division of ASME for publication in the JOUR-

AL OF BIOMECHANICAL ENGINEERING. Manuscript received July 29, 2009; final manu-
cript received May 24, 2010; accepted manuscript posted December 15, 2010; pub-

ished online February 4, 2011. Assoc Editor: Dalin Tang.

ournal of Biomechanical Engineering Copyright © 20
we will focus on hemodynamic simulations in the cardiovascular
system, while emphasizing that the techniques presented are ge-
neric in nature.

Some common sources of uncertainties in cardiovascular simu-
lations include the following:

1. Boundary conditions: Computational simulation of blood
flow requires boundary condition data that typically consist
of �a� inlet velocities, �b� resistances, �c� impedances, or �d�
lumped parameter models at the outlets. Each of these is
subject to variability in measured flow distribution to distal
branches, changing flow rates, and physiologic conditions.

2. Geometry: Anatomical models �blood vessels, aneurysms,
stenosis regions, etc.� are constructed directly from image
data. Construction of the geometrical model is polluted with
image noise, geometrical approximations �approximation to
nearest circles, ellipses, etc.�, variations in segmentation
methods �for example, using thresholding or level set�, and
user variability.

3. Flow-split: In general, there is a lack of clinical data to
determine flow distribution to multiple distal branches. In
our third example, the Fontan surgery, we study the uncer-
tainty in the flow-split between the left pulmonary artery
�LPA� and right pulmonary artery �RPA�.

4. Material properties: Uncertainty in the properties of blood-
vessel walls are important when performing simulations
with nonrigid walls.

Due to the above-mentioned reasons, computational simula-
tions need to be performed over a set of fuzzy parameters to
determine how robust simulation outputs are to variation in the
input parameters. Noise in reconstruction of geometric models
from MRI images is a well known problem. Moore et al. �16,17�
carefully identified sources of such error and provided computa-

tional techniques to reduce them. However, uncertainties originat-
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ng from limited spatial resolution, image segmentation, and
odel construction cannot be completely eliminated �16�.
Currently, there is no systematic way of determining the effect

f uncertain inputs on simulation results. One option is to manu-
lly perturb different parameters using a design of experiment
trategy. Recently, Steinman and co-workers �18,19� performed
omputational simulations to evaluate sensitivities in quantities
uch as wall shear stress and oscillatory shear index to variations
n blood rheology, secondary flows, etc., in human subjects. These
ere some of the first studies showing the relationship between
uctuations in input parameters and output quantities for patient-
pecific cardiovascular simulations. However, if we need to com-
ute sensitivities over a wide range of parameters, and if there are
large number of parameters, this method can become unwieldy

ue to the huge computational cost involved.
In identifying an appropriate stochastic method for uncertainty

uantification, there are several options. Traditionally, and the
ost widely known, Monte Carlo techniques have been employed

or performing probabilistic analysis. However, they are plagued
ith poor convergence rates, and it is impractical to employ them

or computationally expensive three-dimensional problems in-
olving complex geometries. In this work, we use the concept of
tochastic spaces for representing random parameters �20�. This
oncept has been used successfully in many engineering ap-
roaches over the past 2 decades. In the same way that space and
ime are seen as dimensions, randomness is seen as an additional
imension. The generalized polynomial chaos expansion �GPCE�
as been successfully used to tackle engineering problems involv-
ng uncertainties �21�, including computational fluid dynamics
22�. However, one disadvantage of this technique is the coupled
ature of resultant matrix equations that need to be solved in the
andom domain. This is a disadvantage for legacy codes because it
equires the solver to be entirely rewritten.

Recently, a stochastic collocation scheme has been introduced
n which simulations are performed at specific collocation points
n the stochastic space �23,24�. This technique combines the ex-
onential convergence rates of the GPCE scheme with the decou-
led nature of Monte Carlo techniques. Using this technique, we
an quantify the complete probabilistic variability of fields of in-
erest as opposed to extracting only limited statistics.

In this paper, we use the concept of stochastic collocation to
ccount for uncertainties. A stochastic space is defined for each
roblem depending on the uncertainty in the parameters. Further,
ollocation points are identified in this stochastic space and com-
utational simulations of the Navier–Stokes equations are per-
ormed. From the results, interpolants are constructed in the sto-
hastic space and are quantified using probability density
unctions �PDFs� and confidence intervals. The number of collo-
ation points is chosen based on a factor called depth of interpo-
ation that is explained in Sec. 2.1.1. Convergence of these meth-
ds is guaranteed as the depth of interpolation is increased. This
an be tailored according to the expense of the function. It is to be
oted that the choice of input uncertainties play a crucial role in
valuating the PDF as well as confidence intervals on the outputs.

hile Gaussian distributions are suitable to represent random
oise in images, PDFs describing the variability in the blood flow
elocities, or the flow-splits, are not readily available in the clini-
al literature. In these cases, accurate modeling of input PDFs can
e made using data-driven techniques such as MaxEnt �25�. How-
ver, in this work, we restrict ourselves to studying analytical
istributions with the goal of elucidating the capabilities of our
echnique. Whenever available, these analytical distributions are

otivated from data in literature. For instance, the variability in
he inlet velocities for the carotid artery bifurcation problem or the
ariability in the flow-splits is modeled using available informa-
ion.

In an attempt to minimize the number of stochastic collocation

oints, we develop and test a new scheme that adaptively chooses

31001-2 / Vol. 133, MARCH 2011
points based on the known function values. We demonstrate that
this scheme can reduce computational cost by as much as 50%.

This paper is organized as follows: we give a brief description
of the mathematical formalism and uncertainty quantification in
Sec. 2. We provide details of numerical implementation, including
the adaptive algorithm, in Sec. 3. Numerical examples are detailed
in Sec. 4 and we follow it up with discussions in Sec. 5.

2 Mathematical Background
In this section, we provide some basic characteristics of the

stochastic collocation technique. We describe how the method is
nonintrusive, can be used for large-dimensional parametric spaces
by using the sparse grid collocation algorithm, and converges as
the depth of interpolation is increased.

A probability space is a triple �� ,F ,P�, where � is a set of
outcomes, F is a �-algebra of subsets of �, and P is a probability
measure on F. A random variable X is a map from � to the real
line R and is written X :��R �26�. A discrete random variable is
a random variable that takes values in a discrete set of the real
line. A continuous random variable is a random variable that ad-
mits a density function.

2.1 Stochastic Collocation Scheme. In the stochastic collo-
cation technique, instead of dealing with PDFs directly, we use the
concept of stochastic spaces in our numerical solutions. Stochastic
space is the space of �= ��1 ,�2 , . . . ,�N�, where �i represents either
uniform or normally distributed random variables. Any construct
on the stochastic space has a unique PDF associated with it. A
finite dimensional random support space is described by its trun-
cated descriptor �random vector� � so that

� = ��1,�2, . . . ,�N�:� → RN �1�

where the dimensionality N of the stochastic support space is
problem dependent. We denote the approximations to a function g
by g�x , t ,�i�.

In the collocation scheme, the stochastic space is approximated
using mutually orthogonal interpolating functions. To represent a
function at any point in the stochastic space, the function g�x , t ,��
is written as g�x , t ,��=�ig�x , t ,�i�Li��� where Li� . � are the or-
thogonal interpolating polynomials. The stochastic space can then
be queried at any point and PDFs can be constructed.

2.1.1 Construction of Interpolating Polynomials. We represent
a stochastic field using its values at specific collocation points in
the stochastic space with an interpolating polynomial. In general,
for one-dimensional functions, Gauss points and Chebechev
points have the least interpolation error �27�. A trivial means to
extend the above-mentioned scheme for multidimensions is by
constructing a simple tensor product space. However, this is sub-
ject to the curse of dimensionality as the number of points grows
exponentially. As a result, we employ computationally efficient
schemes of searching the stochastic space. The Smolyak algorithm
is a method for choosing the collocation points. The Smolyak
algorithm reduces the number of collocation points necessary for
interpolation in multidimensional random space while simulta-
neously minimizing the resulting error. This has been explained in
Ref. �28�. Further details of the algorithm are given in Refs.
�27,29�. Algorithms for integration based on sparse grids are pro-
vided in Ref. �30�. Collocation points constructed using Smoly-
ak’s algorithm in two-dimensional stochastic space are shown in
Fig. 1.

We use Lagrange interpolating polynomials with Chebyshev
based Smolyak sparse grids in this paper. The number of colloca-
tion points is increased in discrete steps. This is to ensure that all
points with an equal predicted error are evaluated simultaneously.
The depth of interpolation �27� defines the number of simulations
to be run and error indicators have been previously computed for

each depth of interpolation. In practice, the depth of interpolation

Transactions of the ASME
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llows for flexibility in implementation because it can be adjusted
ccording to the computational expense of the computations.

2.2 Solving Hemodynamic Equations With Uncertainty.
lood flow in the cardiovascular system is governed by the
avier–Stokes equations. The velocities u and pressures p are

xpanded using finite elements in space and the finite difference
echnique in time. We define the residual as �31� R= ���u,t
�u ·��u�+�p−��2u− f�, where � denotes the viscosity, � de-
otes density, and f represents all body forces.

In the stochastic dimension, Lagrange interpolates are used to
epresent u and p. Hence, we have u�x , t ,��=�i=1

M ui�x , t ,�i�Li���
nd p�x , t ,��=�i=1

M pi�x , t ,�i�Li���. These interpolating polynomi-
ls have the property, Li�� j�=1 if and only if i= j and 0 otherwise.
y imposing the residuals, R to be 0 at �=�i, we get a set of
ecoupled equations at the stochastic collocation points. As a re-
ult, we need only solve M deterministic equations when perform-
ng uncertainty analysis. Note that the boundary conditions im-
osed on the problem will also be decoupled. This is significant
ecause the method is nonintrusive and solvers need not be re-
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3 Numerical Implementation

3.1 Modeling and Solution of Deterministic Hemodynamic
Equations. A customized version of the SIMVASCULAR software
package is used for cardiovascular geometry modeling as well as
solving the Navier–Stokes equations �32,33�. Models can be con-
structed for idealized as well as patient-specific models using this
software. Idealized models are parametrized using a set of geo-
metrical variables. Scripts are written that can be interfaced with
the software to generate idealized models from their analytic
description.

Patient specific models are constructed directly from image
data. Based on the image data, three basic steps are performed to
construct the model �12,32�: �i� centerline paths are created along
all blood vessels, �ii� segments are drawn along these paths that
are perpendicular to the vessel using a 2D level set method, and
�iii� the segments are lofted to generate the 3D model. Once the
model is generated, it is meshed using tetrahedral elements to be
used with the finite element solver.

The stabilized finite element technique using the generalized-�
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rder Runge–Kutta time stepping. Walls are assumed to be rigid,
nd Newtonian constitutive behavior is assumed, with a viscosity
f blood set to 0.04 g/cm s and density set to 1.06 g /cm3. The
umber of elements and time steps are chosen based on the prob-
em. Both steady-state and pulsatile inflow boundary conditions
re imposed at the inflow face. We assume a parabolic flow profile
or simplicity but the methods presented here do not restrict the
se of other flow profiles, such as the Womerseley solution. Out-
ow boundary conditions are imposed using the coupled multido-
ain method �36� using resistance, impedance, or RCR models.
hese lump the vasculature downstream of the outlets and mani-

est as additional terms in the finite element weak form. In each
xample, we choose the finite element grid size so that the veloc-
ty and pressure fields do not change significantly with further
efinement. The maximum, minimum, and mean of these fields, as
ell as the contour plots, are checked and tested to be invariant
ith grid refinement. Uncertain parameters that are studied in this
aper include �a� uncertainty in geometry, �b� uncertainty in
oundary conditions, and �c� uncertainty in flow-split.

3.2 Uncertainty Quantification in NS Equations Using Sto-
hastic Collocation. The main advantage of the stochastic collo-
ation technique is its nonintrusive nature; i.e., it can be seam-
essly integrated over the existing simulation software with no

odifications to the solver. Hence, the interpolation in the sto-
hastic space is built independently on top of the hemodynamic
olver. The stochastic code was implemented in MATLAB using the
ollowing steps:

1. The collocation points are generated based on the stochastic
dimensions as well as the depth of interpolation. The sparse
grid toolkit spinterp �29� is employed for this purpose. Each
collocation point represents a different value of the uncertain
parameters in physical space.

2. If moments are to be computed, the weights corresponding
to each collocation point are computed by integrating the
Lagrange functions over the stochastic space

3. At each collocation point, a 3D Navier–Stokes simulation is
performed and the relevant outputs are stored. When all
simulations have been performed, statistics, PDFs, as well as
confidence intervals are estimated.

4. The depth of interpolation is increased until sufficient con-
vergence of the PDF has been reached.

To couple the collocation tools with the model generation and
ow solver, the geometries in this paper �except the Fontan prob-

em� are generated using automated scripts. The interface to the
uid-solver is also automated using scripts. All scripts are directly

nterfaced with SIMVASCULAR and call internal SIMVASCULAR func-
ions for meshing, boundary conditions, postprocessing, etc., au-
omatically. The PDF and confidence intervals are computed by
aking a very large number of input variables �of the order of
00,000� and using spinterp to obtain the interpolated values.
rom this, the histogram and hence PDF and confidence intervals
an be computed.

3.3 Adaptive Collocation. The stochastic collocation method
hooses points that minimize the overall error. However, this does
ot take into account any information about the function itself.
imension independent adaptivity has been proposed in previous
ork, wherein a dimension is refined based on its error indicator.
et, the refinement of each dimension itself is uniform, and hence
daptivity over a specific region in the stochastic space is not
one. Dimensional adaptivity refines each dimension convention-
lly but operates on the more important dimensions first �28�.
ence, it does not account for steep function variations and re-
uces to a conventional sparse grid for any symmetric problem.
he concept of functional adaptivity has been attempted for lo-
ally linear basis functions �37�. However, such interpolates with
iscontinuous gradients are not appropriate for our application.

e have therefore developed a method to adaptively choose col-

31001-4 / Vol. 133, MARCH 2011
location points for Lagrange interpolating polynomials. The goal
is to reduce computational cost because of the large expense of
performing multiple cardiovascular simulations.

The choice of the error indicator plays an important role in the
adaptive algorithm. Finite element simulations have used Hessian
information for applications with linear finite elements �31,38� to
create adaptive meshing schemes. The rationale is that if a Taylor
expansion is used for the functions, the second order term is the
least order that cannot be captured. Further, finite elements use
local interpolants, which makes the choice of Hessians inappro-
priate in the context of global interpolation. Since the theory be-
hind collocation relies on convergence of the function value with
increasing depth of interpolation �which is global�, we use error
indicators based on the function itself �rather than its gradients or
hessians�. For a collocation point ck, we denote its neighbors as
N�ck�.

The essence of the algorithm is to split collocation points into a
frozen set and an active set. An existing collocation point will be
refined if there is at least one active point in a local neighborhood
surrounding that point. We present the adaptive algorithm for-
mally below.

Compute the function values for depth of interpolation d=0 and
d=1. Denote this set as Cd. Set F=� �F represents the set of
frozen collocation points�. Perform the following until the termi-
nation criterion is met:

1. Evaluate neighbors of a collocation point, and check if the
function value needs to be evaluated: Set d=d+1 and evalu-
ate the function �using Lagrange interpolation� at Cadapt,d+1
��Cd+1−Cd�, the set of collocation points that are in Cd+1 but
not in Cd. If a collocation point c�Cadapt,d+1 has at least one
neighbor, h that is not in the frozen set, i.e., ∃h�N�c��F,
perform a simulation at c. Otherwise, add c to F.

2. Compute hierarchical error indicator: Compute the hierar-
chical error indicator, E�ct�= f�ct�−If�ct�, the difference be-
tween the function value and the interpolated value, at each
collocation point where the function was evaluated in step 1.

3. Update the set of frozen points: For each point c evaluated in
step 1, add the collocation point to the set F if E�c���,
where � is the chosen tolerance value.

4. Check termination criterion: If all of the collocation points
are frozen, terminate. Else, go to step 1.

Using this method, when we increment the depth of interpola-
tion, we perform simulations only at those points, which are not a
subset of frozen patches that are computed according to our error
estimate. This algorithm preserves the interpolation error up to �.
Further, setting �=0 makes this algorithm equivalent to the con-
ventional sparse grid algorithm. The value of � can be chosen
according to the smoothness of the function and the expense of
computing function values. This is similar to the adaptive param-
eter used in Ref. �27�. Figure 2 shows a flowchart of the procedure
for performing uncertainty analysis with adaptivity.

4 Numerical Examples
In this section, we apply these stochastic methods to three car-

diovascular model problems: an idealized abdominal aortic aneu-
rysm, an idealized carotid artery bifurcation, and a patient-specific
Fontan surgery problem.

4.1 Abdominal Aortic Aneurysm. In this example, we evalu-
ate uncertainties in an idealized model of an abdominal aortic
aneurysm �AAA�. Current research in AAA hemodynamics re-
volves around three questions: �a� What is the cause of aneurysm?
�b� What determines their rate of expansion? �c� When do they
rupture? The exact pathogenesis of AAA is unknown and is hy-
pothesized to be a combination of factors such as genetic disor-
ders, mycotic infection, high blood pressure, smoking, atheroscle-

rosis, and aging �39�. The rate of expansion of the aneurysm is a

Transactions of the ASME
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aluable indicator to determine the risk of rupture and decide if
urgical intervention is necessary �39�. This, however, depends on
actors such as the formation of endoluminal thrombus �anoma-
ous response of the endothelium to low and oscillatory shear
tress �40,41�� and the mechanical properties of the arterial wall.
his has motivated researchers to perform hemodynamic and FSI
imulations and study shear stresses and recirculation near walls
f the AAA.

Idealized models have been widely used to study flow patterns
nd hemodynamic stresses in the AAA �42–44�. Flow separation
n the aneurysm and shear stresses on AAA walls help to deter-

ine formation of regions of stasis as well as growth dynamics of
he AAA �43�. Parametric in vitro studies of the effect of increase
n AAA radius on the flow patterns and wall stresses have been
tudied to identify the critical size for rupture of the aneurysm
43�. Realistic patient-specific studies have been performed to as-
ess the risk of aneurysm rupture using solid mechanics �45� as
ell as fluid-structure interaction simulations �46�. It has been

eported that surgical interventions should not be based on radius
lone but on other factors such as wall shear stress �47�. Here, we
erform the task of computing the effect of uncertainty in AAA
adius using the sparse grid collocation technique. The goal is to
llustrate the stochastic collocation method by evaluating the ef-
ect of uncertainty in the aneurysm size on output parameters.

hile we use an idealized model here, we emphasize that the
echnique we present is generally applicable to the patient-specific
ase as well.

An idealized AAA model is constructed using an automated
cript that takes the radius as an input parameter. The values of the
arameters are chosen based on typical sizes for humans �48� with
he diameter of the parent vessel, dp=2.0 cm, bifurcation angle
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each coll

Fig. 2 A schematic of the stochastic colloc
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Fig. 3 „a… Stochastic space representation of mean she
interpolation using conventional sparse grids are shown

using the vertical blood velocities.
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	=36 deg, and iliac artery diameter, di=1.4 cm. Steady state ve-
locity boundary conditions are assumed at the inlet to the abdomi-
nal aorta with flow rate Q=30 cm3 /s. The outlets are modeled
using resistance boundary conditions to represent the downstream
vasculature and are appropriate for steady-state flows with fully
developed velocities at the outlet. The pressure and flow rate are
related as p=QR, where R is the resistance and Q is the flow rate.
Resistance boundary conditions with R=443.4 dynes s /cm5 are
employed at the outlet iliac arteries. The uncertainty in radius is
expressed as a normal random variable, r����N�r� ,r�

2� with
mean r�=1.8 and standard deviation r�=0.2. The radius is given
as r���=r�+r��. A tetrahedral mesh with roughly 80,000 ele-
ments, which ensured spatial convergence, was generated for each
AAA model. A time step of 0.005 s was used and the simulation
was run for 400 timesteps to ensure convergence to steady-state
conditions.

A one-dimensional stochastic space is represented using Cheby-
shev nodes and Lagrange polynomial interpolates. The Navier–
Stokes equations are solved at each collocation point. The mean
spatial wall shear stress �MWSS� across the aneurysmal region is
chosen as the output variable. A plot of the MWSS in the stochas-
tic space and its convergence using Lagrange polynomials is
shown in Fig. 3. Locally linear interpolating functions did a poor
job of refining the function near �=0. The shape of the shear
stress plot is due to a combination of increasing cross-sectional
area of the aneurysm and reduction in traction due to recirculation
of blood. Increased area reduces the velocity across the aneurysm
for a constant volumetric inflow rate but once recirculation sets in,
forward flow is confined to the central portion or the core of the
artery. The one-dimensional plot shown in Fig. 3 has regions of

ulation at
tion point
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teep function variation �corresponding to initial variation with
ncreasing radius� and regions where it is almost constant �once
ecirculation sets in�. Shear stress plots are shown in Fig. 4 for
hree different radius values. Figure 5 shows contours of vz illus-
rating recirculation for different radii of the abdominal aneurysm.
he recirculation region develops between �=0.02 and �=0.14
ut does not vary significantly from �=0.14 to �=0.5. This ex-
lains the initial steep variation in the shear stresses but moderate
ariation beyond �=0.1.

To further reduce the number of required flow simulations, we
sed the adaptive algorithm with �=5
10−3. This resulted in a
ignificant reduction in the number of collocation points because
oints were not added in the flat region of the function. For a level
Smolyak sparse grid, 129 points were required, but 41 points

ufficed for the adaptive algorithm. For levels 5 and 6, 29 and 35
oints were required using the adaptive algorithm as opposed to
3 and 65 points, respectively, as shown in Fig. 6. The adaptive
lgorithm resulted in savings of almost 50%.

ξ = 0.5 ξ = 0.0 ξ = 1.0

MWSS
( g

cm s2

)

ig. 4 The figure shows wall shear stress plots at different
adii corresponding to the extremes and mean of the stochastic
pace

ig. 5 Contours of vz for the recirculating regions „with posi-
ive component of vz… „from left… �=0.02, �=0.09, �=0.14, and
=0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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ξ

Fig. 6 The stochastic collocation points for a depth of in

adaptive sparse grid
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Further, we compute the PDF of shear stresses, which is shown
in Fig. 7. This figure shows the probability of average shear
stresses across the aneurysm. The PDF does not change signifi-
cantly beyond level 6 and hence, a depth of interpolation 6 is
found to be sufficient for this problem. From the PDF, we ex-
tracted confidence intervals as well as confidence levels. A confi-
dence interval, CI, is given by CI= ��L ,�U�, where Pr��L��
��U�=1−� and �1−��
100% is the confidence level. The con-
fidence bounds are given in Table 1. This table indicates that for
the given uncertainty in the radius, we can be 99.9% certain that
the MWSS is between 0.46 and 0.81 g / �cm−s2�.

4.2 Carotid Artery Bifurcation. The carotid artery is a major
vessel that provides oxygenated blood to the neck and head. Pio-
neering work of Zarins and co-workers �49� demonstrated a link
between atherogenesis and hemodynamic variations to the bifur-
cation geometry �obtained from human cadaver data� using in
vivo steady-state flow experiments on the carotid bifurcation. In-
timal thickening �formation of atherosclerotic plaque� was found
to be inversely proportional to the shear stresses and the measured
shear stresses were significantly lower at the locations of plaque
formation. Subsequently, strong correlations were found between
the inverse of maximum shear stress, inverse of mean shear stress,
and oscillatory shear stress with the intima thickness under pulsa-
tile flow conditions �50�. The carotid sinus, which occurs at the
bifurcation of the common carotid artery into the interior and
exterior carotid arteries, has been the focus of many computa-
tional studies �6,34,48�. The study of hemodynamics and wall
shear stresses near the carotid sinus is an area of significant inter-
est. Milner et al. �6� performed a detailed computational study of
hemodynamics in the carotid bifurcation. In this example, we ex-
amine hemodynamics in an idealized carotid artery due to uncer-
tainties in geometry as well as boundary conditions. Thomas et al.
reported �51� that the sinus geometry, as well as flow rate, can
vary significantly in humans if measured over a time period of a
couple of weeks. Geometrical uncertainty can be associated with
changing positions of the patient and limitations of the measure-
ment instrument �51�. Marshall et al. �52� used magnetic reso-
nance imaging �MRI� with cine phase contrast to measure blood
velocities in the carotid bifurcation. This example illustrates the
use of the stochastic collocation method with more than one un-
certain parameter.

The radius of the carotid artery sinus and the inflow velocity
waveform are assumed to be uncertain. Impedance boundary con-
ditions are imposed at the outlets �36�. In this method, the flow
rate at any time depends on the pressure history over one time
period and utilizes Womersley’s linear wave theory. The split
angle is 50 deg, the diameter of the CCA is 6.2 mm, the ICA is 3.5
mm, and that of the OCA is 4.4 mm. Outflow and the inflow
velocity profiles were taken from literature values �52�. The out-
flow velocity was used to specify the flow-split to the two out-
flows. This information was used together with a typical pressure
waveform to compute impedance values. The finite element mesh
contained 100,000 tetrahedral elements and a time step of
0.003067 was chosen. The time period of a cardiac cycle is 0.923
s. Three cardiac cycles �900 time steps� were simulated to ensure
convergence of the results.
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The mean aneurysm radius is 4.0 mm and is uniformly distrib-
ted between 3.7 mm and 4.3 mm. The blood flow velocity de-
ends on the state of the individual. Activities such as walking,
itting, standing, sleeping, and running have different flow rates
ssociated with them. Uncertainty can occur due to physiological
actors, as well as the absence of prior knowledge about how the
ubject spends his time. Based on the individual, the PDF of ac-
ivities, and hence the blood flow rate, will change. For example,
construction worker might spend equal amount of time walking,

tanding, and sleeping, whereas a software engineer might spend
ost of his time sitting. While our framework can use data, if

vailable, about the habits of a particular subject, we restrict our-
elves to perform two representative studies here: �a� a uniform
DF of inlet velocities for subjects with a labor-intensive
orkhabit in which all velocities in the range are assumed to be

quiprobable, v=U�0.8v̄ ,1.2v̄� and �b� a Gaussian distribution of
nlet velocities for subjects with a sedentary lifestyle in which a

ean value is assumed to be the most probable, with some varia-
ion v=N�v̄ ,0.2v̄2�. v represents inflow velocity and v̄, the mean
elocity, is chosen from literature �52�. The analytical PDFs in �a�
nd �b� were chosen in the spirit of elucidating our technique and
ts applicability rather than being representative of the actual
ariations in the blood flow rate for human subjects. The input
DFs are chosen so that both have the same mean and range. For
ore complex input data, maximum entropy techniques can be

sed to compute the input distribution �25�.
A two-dimensional Smolyak sparse grid using Gauss–Lobatto–

hebyshev points is constructed. Inflow velocities and carotid ra-
ius are assigned to each grid point and the Navier–Stokes equa-
ions are solved. The mean shear stress over the carotid sinus is
xtracted every 10 timesteps during the last simulated cardiac
ycle. Figure 8 illustrates the variation of the shear stress over the
tochastic space. Plots of the variation of the blood flow velocity
ue to uncertainties in the geometry and boundary conditions for
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Fig. 7 The figure shows converge
units… as the level of interpolation i
the PDF is a manifestation of the p

able 1 The confidence intervals on shear stresses for the
AA problem corresponding to different confidence levels

L 90 95 99 99.9
I �g /cm s2� �0.46,0.57� �0.46,0.62� �0.46,0.765� �0.46,0.81�
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the carotid artery are shown in Fig. 9. We also performed a sen-
sitivity analysis by computing the gradients of the interpolating
Lagrange polynomials, as shown in Fig. 10. The shear stress
shows positive sensitivity with respect to velocity and predomi-
nantly negative sensitivity to the radius owing to regions of recir-
culation. However, they are of a similar order of magnitude mean-
ing that they are equally important stochastic dimensions.

The output PDFs corresponding to both the inlet PDFs are
shown in Fig. 11. The shape of the output PDF is quite different
for the two cases since the Gaussian case represents more infor-
mation �mean and standard deviation� than a uniform distribution
�no information�. Table 2 shows the confidence intervals corre-
sponding to the PDFs shown in Fig. 11. As expected, the Gaussian
PDF has tighter confidence intervals, which means that the more
information we have about the inputs, the higher the confidence
on the outputs. For the uniform distribution, there is an almost
linear variation in the confidence intervals.

Further, the adaptive algorithm was performed with �=0.1. The
choice of � depends on the maximum value of the output stochas-
tic variable that is computed. We choose � to be less than 1% of
the maximum value. A comparison of the reduction in grid points
is shown in Fig. 12. For a level 4 sparse grid, 65 points are
required for Smolyak sparse grid, while only 46 points are re-
quired for the adaptive sparse grid. Similarly, for a level 5 sparse
grid, 145 points are necessary for a conventional sparse grid,
while 73 points were required for the adaptive sparse grid. There
is roughly a 50% reduction in the number of collocation points
using the adaptive strategy.

4.3 Uncertainty in Patient-Specific Model of the Fontan
Surgery. The Fontan surgery is performed to treat children with
single ventricle heart defects. These defects are uniformly fatal if
left untreated, as they leave a patient with only one functioning
ventricle. Palliation usually requires three surgeries starting imme-
diately after birth, and culminating in a Fontan procedure. The
IVC and SVC are connected to the pulmonary arteries, resulting
in a total cavo-pulmonary connection �TCPC� �53�. The Fontan
surgery has been widely studied using computations, and quanti-
ties such as energy loss and wall shear stress have been extracted
�54,55�. We have previously performed detailed simulations of
Fontan hemodynamics at rest and exercise conditions and have

0.65 0.7 0.75 0.8
r Stress

Level 2
Level 4
Level 6
Level 7
Level 8

of the PDF of shear stresses „cgs
creased. The relatively long tail in
au in Fig. 3.
hea

nce
s in
extracted multiple parameters including wall shear stress, energy

MARCH 2011, Vol. 133 / 031001-7



polation 3 and „right… depth of interpolation 4

F
a
=
r
r
c

shear stress to input parameters.

031001-8 / Vol. 133, MARCH 2011
efficiency, pressure levels, and flow distribution �9,10,12�. We
have also evaluated alternate surgical designs, such as a Y-graft
design that improved hemodynamic performance in a single
patient-specific model.

There are a number of uncertain parameters that should be
evaluated to perform a comprehensive assessment of Fontan simu-
lation output sensitivity. In this example, we choose to focus on
the LPA/RPA flow-split as an illustration of the potential of the
stochastic collocation method. The flow-split between the LPA
and the RPA is an important factor that determines the hemody-
namics. In healthy subjects, the flow-split can change with exer-
cise conditions, age �56�, and other physiologic factors. It has
been reported that the pulmonary artery geometry can influence
how the flow-split changes with increasing levels of exercise. In
small patients, using PC-MRI to measure flow in the LPA and
RPA can be challenging and subject to variability. Due to a com-
bination of these factors, we assume the flow-split between RPA
and LPA to vary from 70–30% to 40–60%, based on previous
studies examining changes in flow-split. Here, we present a com-
putational technique to efficiently compute the relationship be-
tween flow-split and both the energy efficiency and pressure drop

wall shear stress in cgs units using „left… depth of inter-

��
��
��
��

	
���

to input uncertainties which is positive with velocity „left…
trate similar order of magnitude of the sensitivity of wall
Fig. 8 Comparison of stochastic space representation of the
(cm/s)

ig. 9 Plots of the magnitude of blood velocity in the carotid
rtery at four points in the stochastic space „from left… �1 ,�2
„0.5,0…, „0.5, 1…, „0,0.5…, and „0,1…, where the first coordinate

epresents the stochastic velocity dimension and the second
epresents the stochastic radius dimension. The results were
omputed at t=0.923 s.
��
��
��
��

	
���

Fig. 10 The figure shows sensitivities of the wall shear stress
�� /��2 and negative with radius „right… �� /��1. Contours illus
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rom the IVC to the LPA. We show that the stochastic collocation
echnique can be performed in a realistic time-frame with patient-
pecific models of the TCPC.

A patient-specific Fontan model geometry was generated di-
ectly from MRI image data �12�. Flow rates are chosen to simu-
ate resting flow conditions of the patient. Pulsatile inflow rates
ere acquired from patient-specific PC-MRI data and a respira-

ory model was superimposed. A parabolic velocity profile is im-
osed at the inferior vena cava �IVC� and superior vena cava
SVC� inlets.

A three element Windkessel model �RCR� �57� was used to
nforce downstream boundary conditions. This is a lumped pa-
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Fig. 11 A comparison of PDF of mean shear stress acro
„right… a Gaussian PDF for velocity

able 2 Confidence intervals on the shear stresses for the ca-
otid artery bifurcation problem for different confidence levels

L 90 95 99 99.9
I �uniform, g /cm s2� �4.4,19.6� �4.1,20.2� �3.8,21.0� �3.6,21.5�
I �Gaussian, g /cm s2� �7.9,13.6� �7.4,14.3� �6.9,15.0� �6.8,17.5�
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Fig. 12 The figure shows „left… an adaptive Chebyshev–G
the Carotid artery bifurcation problem. The adaptive meth

50%.
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rameter model, and is implemented in the Finite element solver
using a coupled multidomain method. Initial RCR parameters
were chosen to produce a 55%–45% flow-split between the left
and right pulmonary arteries. The flow-split is assumed to be a
Gaussian distribution with mean 55% and standard deviation of
5%. To produce a 3� flow-split variation on either side of the
mean, a Gaussian stochastic space with the flow-split varying be-
tween 40–60% and 70–30% was chosen. The desired flow-splits
were achieved by adjusting the RCR parameters as explained
below.

The lumped parameter RCR equations at the outlets in the
model are given by

pin + R2C
�pin

�t
= pout + �R1 + R2�Qin + R1R2

�Qin

�t
�2�

where pin and pout represent the inlet and outlet pressures in the
domain downstream of the outlets, Qin is the flow leaving the
outlet, R1 and R2 are resistances, and C is the capacitance of the
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the aneurysm using „left… a uniform PDF for velocity and
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reduces the number of required simulations by roughly
ss
aus
od
MARCH 2011, Vol. 133 / 031001-9



W

=
m
t

C

k

t

F
p
l
=
t

0

indkessel model.

The flow through the outlet is modified as Q̂=kQ where k
N�1,0.052� is chosen from the flow-split to be simulated. To
aintain the same pressures, one choice is to modify the resis-

ances as follows:

pin + R̂2C
�pin

�t
= pout + k�R̂1 + R̂2�Qin + kR̂1R̂2

�Qin

�t
�3�

omparing Eqs. �2� and �3�, we have kR̂1R̂2=R1R2�C0 and

�R̂1+ R̂2�= �R1+R2��C1. Solving, we obtain

R̂2 =
C1 � �C1

2 − 4kC0

2k
�4�

R̂1 =
C1  �C1

2 − 4kC0

2k

Thus, the uncertainty in flow-split is transformed into uncer-

ainties in the boundary resistances, R̂1 and R̂2. Stochastic collo-
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c d
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ig. 13 The figure shows mean flow velocities for the Fontan
atient with uncertainty in flow-split. The plots show mean ve-

ocities at „top left… t=0.0, „top right… t=0.81, „bottom left… t
1.62, and „bottom right… t=2.43 s. The period of the respira-

ory cycle is 2.86 s
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Fig. 15 The figure shows „left… PDF of hemodynamic effic

and the LPA using level-4 sparse grid collocation
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cation points based on the Chebyshev grid are chosen in the �0,1�
interval and transformed to ��2.57,2.57� �corresponding to
�0.01,0.99� in the Chebyshev grid� using inverse Gaussian CDF.
This is mapped to the flow-split from which k values are com-
puted. The resistance values are computed from k using the equa-
tions described above. The Navier–Stokes solver was used for
computing the velocity and pressure fields. A grid containing over
1,000,000 elements was employed using adaptive meshing with a
time step size of 0.002 s and a total run time of two respiratory
cycles. The size was chosen so that the finite element results do
not change with further increase in grid resolution. The results
were gathered over the final respiratory cycle. A single simulation
took about 3 h to complete using 96 AMD processors in parallel.

Figure 13 shows the mean flow velocities computed using
level-4 sparse grid interpolation. We show the results with level-4
since the results from level-5 were almost the same. Figure 14
shows the standard deviation of velocities computed using the
sparse grid collocation technique. Since the uncertainties are de-
fined on boundary resistances, the standard deviation propagates
from the boundary to the center. During the period of retrograde
flow in the IVC, the standard deviation of velocities propagates
back to the IVC as depicted at t=2.43 in Fig. 14. However, it is 0

a b

c d

std.of velocity
(cm
s

)

Fig. 14 The figure shows standard deviation of flow velocities
for the Fontan patient with uncertainty in flow-split. The plots
show standard deviations at „top left… t=0.0, „top right… t=0.81,
„bottom left… t=1.62, and „bottom right… t=2.43 s.
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n the SVC at all times.
Figure 15 shows PDFs of energy efficiency and pressure drop

etween the IVC and the LPA ��p�. We observe that the effi-
iency is not very sensitive to the flow-split. One reason for this
bservation might be that the efficiency is computed by summing
he flow energies at all outlets, so rebalancing the flow has little
ffect. These variations are very small compared with the differ-
nces in efficiency between competing designs for the TCPC
valuated in our previous work �12�.

In contrast, �p computed at t=0.81 shows a large sensitivity to
he flow-split, and confidence intervals on �p are summarized in
able 3. The computed CIs are more than 1 mm Hg and are large
nough that they could lead to a different clinical decision from
ne end of the range to the other. We therefore conclude that
ncertainty in flow-split have a non-negligible effect on the �p
etween the IVC and the LPA. Uncertainty in the overall �IVC
SVC� LPA/RPA flow-split will also influence predictions of IVC
ow distribution to the LPA and RPA. This will influence the
oncentration of the hepatic factor that has been shown in clinical
tudies to impact normal lung development �58�. The distribution
f the IVC flow is known to differ significantly from the overall
ow distribution �59�.
This work demonstrates that the required accuracy of the input

ata for Fontan simulations depends on what output quantity is
eing computed. However, this study was conducted assuming the
VC and SVC inflow velocities are known deterministically, and
he reconstructed geometry is exact. A more extensive study could
e performed to rank multiple output parameters according to sen-
itivity with respect to multiple input uncertainties.

Discussion
We have presented a generally applicable computational tech-

ique for incorporating uncertainties in hemodynamic simula-
ions. Using the sparse grid collocation technique, we choose col-
ocation points and interpolates in the stochastic space and
erform a carefully chosen set of cardiovascular simulations. Fur-
her, we developed a new adaptive technique using Lagrange
olynomials to reduce the number of required simulations, cutting
own the overall computational cost by as much as 50%. We
howed the applicability of the technique to three problems with
ifferent sources of uncertainties in �a� geometry, �b� inlet veloc-
ty, and �c� flow-split. Convergence was shown with increasing
epths of interpolation in the stochastic space. Confidence bounds
s well as PDFs were constructed for variables of interest. Shear
tresses were studied across the aneurysm in an idealized AAA
odel and across the sinus in an idealized carotid bifurcation
odel. In the AAA problem, the 99% CI has almost a 30% varia-

ion around the mean value of WSS. In the carotid artery bifurca-
ion problem, the sensitivity of shear stresses due to velocities was
ignificantly higher than that due to uncertainties in the geometry.
n both of these problems, uncertainty quantification plays an im-
ortant role and outputs were very sensitive to input uncertainties.
ncertainties need to be accounted for if the actual input variabil-

ty is close to what was used in this work. For the patient-specific
ontan problem, the energy efficiency was quite robust to vari-
bility in flow-split. However, the pressure difference between
VC and LPA showed significant variability. Additional patients
hould be evaluated so that a comprehensive ranking of multiple
arameter sensitivities can be made.

This work demonstrates a promising approach that offers a sys-

able 3 Confidence intervals on the pressure difference be-
ween IVC and the LPA in mm Hg

L 90 95 99 99.9
I �p �mm Hg� �1.68,2.48� �1.67,2.56� �1.57,2.81� �1.48,2.93�
ematic and efficient method to quantify uncertainties in cardio-

ournal of Biomechanical Engineering
vascular simulations. This method has the potential to replace cur-
rent “trial and error” sensitivity analyses by using a unified
framework with sound mathematical convergence theory.

6 Limitations and Future Work
The technique presented in this work shows significant promise

to be extended to robust design problems, i.e., problems in which
the design cost is stable to small fluctuations in the problem pa-
rameters. We plan to couple these methods with a framework we
have developed for cardiovascular optimization �60,61�. In addi-
tion to characterizing PDFs, we will use the technique to evaluate
sensitivities and robustness of problem parameters. These will
hopefully result in a better trust of simulation results that will
eventually lead to adoption of these tools in the clinical setting. In
the future, the adaptive stochastic collocation method could be
applied to a wide range of cardiovascular simulations and other
complex flow problems.

One limitation in this paper is that we use simple PDF models
for input uncertainties. In the future, we plan to build realistic
models for input uncertainties using data-driven techniques such
as maximum entropy �25�. We have only examined two uncertain
inputs. We plan to evaluate more sources, which will significantly
increase computational cost. Another limitation is when there are
flow transitions or bifurcation regions in the stochastic space,
which cannot be captured using Lagrange interpolates. Wavelet
interpolates may be a better choice to resolve such local regions of
sharp variations �62� and is an area of ongoing research. In our
simulations, we assume that the walls are rigid, and we plan to
perform FSI simulations with uncertainties in material properties.
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